

Transportation Improvement Study

May 17, 2024

Pedestrian Improvements - Eastman Street

Township of Cranford, Union County, New Jersey

Prepared for:

Township of Cranford 8 Springfield Avenue Cranford, New Jersey 07016 Prepared by:

Jeffrey Fiore, P.E. NJ Professional Engineer License No. 46428 Nicholas Aiello, P.E., PTOE, PTP

Nicholas Aiello, P.E., PTOE, P. NJ Professional Engineer License No. 51870 **Colliers Engineering & Design**

101 Crawfords Corner Road Suite 3400 Holmdel, New Jersey 07733 Main: 877 627 3772 colliersengineering.com

Project No. CDT0090

Table of Contents

Introduction	1
Existing Roadway Conditions	3
Existing Traffic Conditions	5
Future Traffic Conditions	6
HCM Capacity Analysis	8
Summary and Conclusions	12
Tables	
Table 1 – Data Collection Efforts and Established Network Peak Hours (1 of 2)	5
Table 2 – Data Collection Efforts and Established Network Peak Hours (2 of 2)	5
Table 3 – HCM LOS/Delay Criteria	
Table 4 – Level of Service Summary	9
Appendices	
Appendix A	Traffic Figures
Appendix B	.Traffic Count Data
Annendix C	Canacity Analysis

Introduction

This Transportation Improvement Study has been prepared for the Township of Cranford ("Applicant") in association with proposed pedestrian improvements along Eastman Street ("Project") within the Township of Cranford, Union County, New Jersey. The proposed Project includes permanently closing a portion of Eastman Street to vehicular traffic and creating a pedestrian spacing to enhance safety and mobility in the study area. The closure of Eastman Street for vehicular traffic is proposed north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue. By closing these roadway segments, the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street will be eliminated. To support efficient traffic operations and safety, the following improvements are recommended:

- Converting Eastman Street to a pedestrian space north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue.
- Eliminating the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street.
- Installation of a new traffic signal and capacity improvements at N. Avenue (Route 28) & Miln Street
- Geometric and signal improvements at the intersection of N. Avenue (Route 28) & N Union Avenue.
- Othe pedestrian improvements in the area.

N. Avenue (Route 28) currently intersects Eastman Street through a curve, is offset, and the intersection angle is skewed. This existing geometry creates undesirable conditions for both motorists and pedestrians to traverse through the area. The intersection is approximately 200' wide with three (3) crosswalk locations and limited visibility. Eliminating this intersection and relocating the traffic signal to North Avenue (Route 28) & Miln Street will more conventional defined intersection with fewer conflict points and increased visibility along North Avenue (Route 28). The relocation of the traffic signal will provide safety benefits to all users, including motorists and pedestrians.

The expanded public realm created by closing the two Eastman Street segments will increase pedestrian safety and regional connectivity in the downtown area of Cranford. NJ TRANSIT bus route 113 runs along N. Avenue and the NJ TRANSIT Raritan Valley Rail Line Cranford Station is just east of the study area. Additionally, the proposed pedestrian realms will connect the Post Office Plaza and Eastman Plaza parks to the N. Avenue pedestrian realm and local businesses.

The proposed improvements are consistent with guidance in New Jersey Department of Transportation (NJDOT) Complete Streets policy to design streets with safe access for all users, and NJ's Strategic Highway Safety Plan (SHSP) to reduce serious injuries and fatalities on all public roads, and the Safe Routes to Transit Program. A Study Area Location Map is included as **Figure 1** in **Appendix A**. A Concept Plan illustrating the proposed improvements is provided as **Figure 2** in **Appendix A**.

This study presents an evaluation of the current and future traffic conditions in the vicinity of the Project. Specific elements included in this study are:

- An inventory of the roadway facilities in the vicinity of the Project, including the existing physical and traffic operating characteristics;
- Determination of the 2024 Existing Conditions;
- Forecast of the 2024 Existing Traffic Volumes;
- Peak Hour Capacity Analysis for the 2024 Existing Conditions;
- Forecast of the 2024 Improved Traffic Volumes;
- Peak Hour Capacity Analysis for the 2024 Improved Conditions;
- Pedestrian Improements; and
- Summary and Conclusions.

Existing Roadway Conditions

A field investigation was conducted within the study area to obtain an inventory of existing roadway conditions, posted traffic controls, adjacent land uses, lane configurations, and existing vehicular/pedestrian traffic patterns.

Roadways

North Avenue (Route 28) is an east-west oriented urban principal arterial roadway under jurisdiction of the New Jersey Department of Transportation (NJDOT). The roadway provides one (1) travel lane in each direction with a posted speed limit of 25 mph. Within the study area, on-street parking is provided along both sides of the roadway. East of its intersection with Eastman Street, parallel parking is provided along the eastbound travel lane and angled parking is provided along the westbound travel lane. West of its intersection with Eastman Street, angled parking is provided along the westbound travel lane and parallel parking is provided along the eastbound travel lane. It is noted that the Cranford train station is located to the east of the study area along this roadway, which is also serviced by NJ TRANSIT bus route 113.

Union Avenue is a north-south oriented urban minor arterial roadway under jurisdiction of the Township of Cranford. The roadway provides one (1) travel lane in each direction with a posted speed limit of 25 mph. Parallel parking is provided along both sides of the roadway to the north of its intersection with North Avenue (Route 28) and to the south of its intersection with Union Avenue.

Eastman Street is a northwest-southeast oriented local roadway under jurisdiction of the Township of Cranford. The roadway provides one (1) travel lane in each direction with a posted speed limit of 25 mph. North of its intersection with North Avenue (Route 28), parallel parking is provided along the northwest-bound travel lane. South of its intersection with North Avenue (Route 28), angled parking is provided along the southeast-bound travel lane.

Miln Street is a northeast-southwest oriented local roadway under jurisdiction of the Township of Cranford. The roadway provides one (1) travel lane in each direction with a posted speed limit of 25 mph. North of its intersection with Eastman Street, parallel parking is provided along both sides of the roadway. South of its intersection with Eastman Street, parallel parking is provided along the southwest-bound travel lane.

Signalized Intersections

North Avenue (Route 28) & Eastman Street is a signalized four-leg intersection operating with a background cycle length of 90 seconds. N. Avenue (Route 28) currently intersects Eastman Street through a curve, is offset, and the intersection angle is skewed. The eastbound and westbound approaches of North Avenue (Route 28) each provide one (1) shared lane for all turning movements. The southeast-bound approach of Eastman Street provides one (1) dedicated left-turn lane and one (1) shared through/right-turn lane. It is noted that south of the intersection, Eastman Street provides one-way traffic flow in the southeast-bound direction. Thus, the northwest-bound approach of Eastman Street provides one (1) receiving lane for southeast-bound traffic.

North Avenue (Route 28) & Union Avenue is a signalized four-leg intersection operating with a background cycle length of 90 seconds. The eastbound approach of North Avenue (Route 28) provides one (1) shared lane for all turning movements. The westbound approach of North Avenue (Route 28) provides one (1) dedicated left-turn lane and one (1) shared through/right-turn lane. The northbound approach of Union Avenue provides one (1) dedicated through lane and one (1) dedicated right-turn lane. The southbound approach of Union Avenue provides one (1) shared lane for all turning movements.

Unsignalized Intersections

North Avenue (Route 28) & Miln Street is an unsignalized three-leg intersection with the southwest-bound approach of Miln Street under stop control. The eastbound approach of North Avenue (Route 28) provides one (1) shared left-turn/through lane. The westbound approach of North Avenue (Route 28) provides one (1) shared through/right-turn lane. The southwest-bound approach of Miln Street provides one (1) shared left-turn/right-turn lane.

Eastman Street & Miln Street is an unsignalized four-leg intersection under all-way stop control. The northeast-bound and southwest-bound approaches of Eastman Street each provide one (1) shared lane for all turning movements. The northwest-bound and southeast-bound approaches of Miln Street each provide one (1) shared lane for all turning movements.

Existing Traffic Conditions

Traffic volume data was collected within the study area to gain an understanding of the existing roadway conditions and operations through turning movement counts ("TMC") conducted on Thursday September 21, 2023, from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM, and on Saturday, September 23, 2023, from 11:00 AM to 1:00 PM, at the following intersections:

- North Avenue (Route 28) & Eastman Street;
- North Avenue (Route 28) & Miln Street; and
- Eastman Street & Miln Street.

Table 1 – Data Collection Efforts and Established Network Peak Hours (1 of 2)

Peak Period	Date Collected	Traffic Count Time Frame	Established Network Peak Hour
Weekday Morning	— Thursday Contombor 21, 2022 —	7:00 AM - 9:00 AM	7:45 AM – 8:45 AM
Weekday Evening	— Thursday, September 21, 2023 -	4:00 PM - 6:00 PM	4:00 PM – 5:00 PM
Saturday Midday	Saturday, September 23, 2023	11:00 AM - 1:00 PM	11:00 AM – 12:00 PM

Additional TMC data was collected on Thursday, March 21, 2024, from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM, and on Saturday, March 23, 2024, from 11:00 AM to 1:00 PM, at the following intersection:

• North Avenue (Route 28) & Union Avenue.

Table 2 – Data Collection Efforts and Established Network Peak Hours (2 of 2)

Peak Period	Date Collected	Traffic Count Time Frame	Established Network Peak Hour
Weekday Morning	Thursday Manah 24, 2024	7:00 AM - 9:00 AM	7:45 AM – 8:45 AM
Weekday Evening	Thursday, March 21, 2024	4:00 PM - 6:00 PM	4:00 PM – 5:00 PM
Saturday Midday	Saturday, March 23, 2024	11:00 AM – 1:00 PM	11:00 AM - 12:00 PM

The 2024 Existing traffic volumes were established by growing the 2023 TMC data by the recommended NJDOT annual background growth rate of 2.25% for urban principal and minor arterial roadways within Union County, then volume balancing between intersections in an upward fashion. A Volume Flow Diagram illustrating the 2024 Existing Conditions is provided as **Figure 3** in **Appendix A**. The processed TMC data is provided in **Appendix B**.

Future Traffic Conditions

Proposed Vehicular and Pedestrian Improvements

The proposed Project includes permanently closing a portion of Eastman Street to vehicular traffic and creating a pedestrian spacing to enhance safety and mobility in the study area. The closure of Eastman Street for vehicular traffic is proposed north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue. By closing these roadway segments, the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street will be eliminated. To support efficient traffic operations and safety, the following improvements are recommended:

- Converting Eastman Street to a pedestrian space north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue.
- Eliminating the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street.
- Installation of a new traffic signal and capacity improvements at N. Avenue (Route 28) & Miln Street. Intersection radii will be improved. Miln Street will be restriped to prohibit parking near Route 28 and a 2nd approach lane (dedicated left-turn and right-turn lanes) will be provided.
- Geometric and signal improvements at the intersection of N. Avenue (Route 28) & N Union Avenue.
- Othe pedestrian improvements in the area.

N. Avenue (Route 28) currently intersects Eastman Street through a curve, is offset, and the intersection angle is skewed. This existing geometry creates undesirable conditions for both motorists and pedestrians to traverse through the area. The intersection is approximately 200' wide with three (3) crosswalk locations and limited visibility. Eliminating this intersection and relocating the traffic signal to North Avenue (Route 28) & Miln Street will more conventional defined intersection with fewer conflict points and increased visibility along North Avenue (Route 28). The relocation of the traffic signal will provide safety benefits to all users, including motorists and pedestrians.

The expanded public realm created by closing the two Eastman Street segments will increase pedestrian safety and regional connectivity in the downtown area of Cranford. NJ TRANSIT bus route 113 runs along N. Avenue and the NJ TRANSIT Raritan Valley Rail Line Cranford Station is just east of the study area. Additionally, the proposed pedestrian realms will connect the Post Office Plaza and Eastman Plaza parks to the N. Avenue pedestrian realm and local businesses.

The Concept Plan of the improvements is provided in **Appendix A** and **Figure 2**.

Redistributed Traffic

Eastman Street Closure North of Route 28

Northbound and southbound traffic currently traversing the Eastman Street segment between Miln Street and Route 28 will be rerouted to the intersection of N. Avenue & Miln Street. With the existing traffic signal and intersection at Route 28 & Eastman Street proposed to be eliminated and traffic rerouted to the intersection of N. Avenue & Miln Street, it is proposed to signalize the intersection of N. Avenue & Miln Street.

Eastman Street Closure South of Route 28

Southbound traffic currently traversing the Eastman Street segment between Route 28 and Union Avenue/Walnut Avenue will be rerouted to the intersection of N. Avenue & Union Avenue.

A Volume Flow Diagram illustrating the Redistributed Trips is provided as **Figure 4** in **Appendix A**.

2024 Improved Conditions

The 2024 Improved traffic volumes were forecasted by applying the trip redistribution to the existing traffic volumes within the roadway network. A Volume Flow Diagram illustrating the 2024 Improved Conditions is provided as **Figure 5** in **Appendix A**.

HCM Capacity Analysis

The peak hour traffic operations within the project vicinity were evaluated at the study intersections. The analyses were performed using the latest version of *Synchro Trafficware*, a traffic analysis and simulation program. The results of these analyses provide Levels of Service ("LOS"), volume/capacity descriptions, and average seconds of delay for the intersection movements.

The efficiency with which an intersection operates is a function of volume and capacity. The capacity of an intersection is the volume of vehicles it can accommodate during a given time period. LOS is a qualitative measure describing operational conditions within a traffic stream in terms of traffic characteristics, such as freedom to maneuver, traffic interruption, comfort, and convenience. Six (6) LOS are defined for each type of facility with analysis procedures available. Levels of Service range from "A" through "F," with Level "A" representing excellent conditions with no delays, and failure and deficient operations denoted by Level "F." The HCM LOS criteria for signalized and unsignalized intersections is summarized in **Table 3**.

Table 3 - HCM LOS/Delay Criteria

Level of Service	Average Control Delay (sec/veh)											
Level of Service	Signalized Intersections	Unsignalized Intersections										
А	≤ 10	≤ 10										
В	> 10 - 20	> 10 - 15										
С	> 20 - 35	> 15 – 25										
D	> 35 - 55	> 25 - 35										
E	> 55 - 80	> 35 - 50										
F	> 80	> 50										

The Levels of Services for the 2024 Existing and Improved Conditions are detailed in **Table 4**. The capacity analysis calculation worksheets are provided in **Appendix C**.

Table 4 – Level of Service Summary

				:	2024 E	xisting		2024 Improved										
Intersection	Move	ment	AM	Peak	PM	Peak	SAT	Peak	AM	Peak	PM	Peak	SAT	Peak				
			LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay				
	EB	LTR	Α	6.9	Α	7.3	Α	6.8	-	-	-	-	-	-				
North Avenue	WB	LTR	Α	3.1	Α	2.7	Α	5.9	-	-	-	-	-	-				
(Route 28) (EB/WB) & Eastman Street	SEB	L	D	39.3	D	37.6	D	37.2	-	-	-	-	-	-				
(SEB)	SED	TR	D	37.7	D	38.4	D	37.5	-	-	-	-	-	-				
	Ove	erall	Α	8.8	Α	8.3	Α	9.4	-	-	-	-	-					
	EB	LTR	В	18.5	С	22.7	В	14.3	С	23.0	С	31.1	В	18.1				
	WB	L	Α	8.4	Α	9.9	Α	7.0	Α	9.0	В	10.9	Α	7.4				
North Avenue		TR	В	12.2	В	13.2	Α	9.3	В	12.4	В	13.2	Α	9.3				
(Route 28) (EB/WB) & Union Avenue	NB	Т	D	40.6	D	39.5	D	41.0	D	40.5	D	39.5	D	41.0				
(NB/SB)	IND	R	С	26.7	С	23.8	С	27.9	С	26.6	С	23.8	С	27.9				
	SB	LTR	D	36.8	D	39.3	D	42.7	D	36.7	D	39.3	D	42.7				
	Ove	erall	С	22.8	С	25.0	С	22.6	С	23.8	С	27.3	С	23.1				
	EB	L(T)	а	9.0	а	8.9	а	8.5	В	15.1	В	17.5	В	13.3				
North Avenue	WB	TR	-	-	-	-	-	-	Α	3.9	Α	3.6	Α	5.8				
(Route 28) (EB/WB)	SWB	L	С	17.8	С	16.1	b	14.8	С	32.7	C	32.3	С	30.9				
& Miln Street (SWB)	2000	R		17.0		10.1	D	14.0	Α	8.1	Α	7.4	Α	7.4				
	Ove	erall	-	-	-	-	-	-	В	11.9	В	12.6	В	11.6				
	SEB	LTR	а	9.5	а	8.5	а	8.7	b	11.0	b	10.4	b	10.8				
Eastman Street	NWB	LTR	а	8.2	а	8.1	а	8.2	-	-	-	-	-	-				
(SEB/NWB) & Miln	NEB	L	а	9.0	а	8.4	а	8.9	а	7.6	а	7.6	а	7.7				
Street (NEB/SWB)	INLD	TR	a 	9.0	a 	0.4	a 	0.5	-	-	-	-	-	-				
	SWB	LTR	a 9.2		a 8.7		а	9.0	-	-	-	-	-	-				

Note: Uppercase indicates signalized intersections; lowercase indicates unsignalized intersections.

North Avenue (Route 28) & Eastman Street

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "D" or better during all peak hours studied. The calculated 95th percentile queues along the eastbound approach of North Avenue (Route 28) and the southeast-bound approach of Eastman Street extend to Miln Street during all peak hours studied.

2024 Improved Analysis

The proposed Project includes permanently closing a portion of Eastman Street to vehicular traffic and creating a pedestrian spacing to enhance safety and mobility in the study area. The closure of Eastman Street for vehicular traffic is proposed north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue. By closing these roadway segments, the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street will be eliminated.

With the removal of this intersection, the eastbound and westbound approaches of North Avenue (Route 28) will operate freely at this location.

North Avenue (Route 28) & Union Avenue

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "D" or better during all peak hours studied. The intersection operates at an overall Level of Service "C" during all peak hours studied.

2024 Improved Analysis

Under the Improved condition, all intersection movements will continue to operate at or near Existing Levels of Service. The intersection will continue to operate at an overall Level of Service "C" during all peak hours studied.

North Avenue (Route 28) & Miln Street

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "C" or better during all peak hours studied.

2024 Improved Analysis

Under the Improved condition, it is proposed to relocate the traffic signal from North Avenue (Route 28) & Eastman Street to this intersection. It is also proposed to remove the two (2) on-street parking spaces along the southwest-bound approach of Miln Street to provide dedicated left- and right-turn lanes. All intersection movements will operate at Levels of Service "C" or better during all peak hours studied. The intersection will operate at an overall Level of Service "B" during all peak hours studied.

Eastman Street & Miln Street

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "A" during all peak hours studied.

2024 Improved Analysis

As previously mentioned, it is proposed to restrict vehicular traffic from Eastman Street, between Miln Street and Union Avenue. The northeast-bound and southwest-bound approaches of Miln Street will operate freely, while the southeast-bound approach of Eastman Street will remain stop controlled. All intersection movements will operate at Levels of Service "B" or better during all peak hours studied.

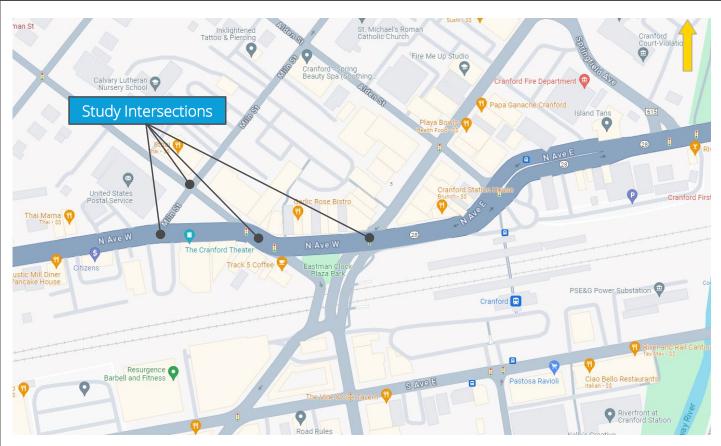
Summary and Conclusions

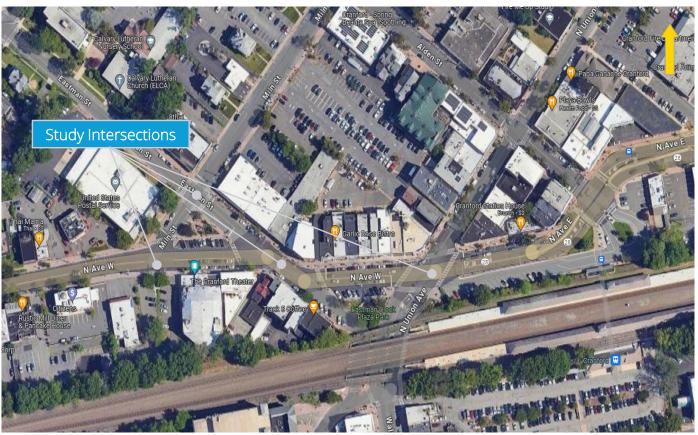
The Traffic Improvement Study evaluated the proposed Eastman Street Closure within the Township of Cranford, Union County, New Jersey. The findings of the Traffic Impact Study are summarized as follows:

- 1. The proposed Project includes permanently closing a portion of Eastman Street to vehicular traffic and creating a pedestrian spacing to enhance safety and mobility in the study area. The closure of Eastman Street for vehicular traffic is proposed north of N. Avenue (Route 28) to Miln Street and south of N. Avenue (Route 28) to Union Avenue. By closing these roadway segments, the existing skewed intersection and traffic signal at N. Avenue (Route 28) & Eastman Street will be eliminated. To support efficient traffic operations and safety, the following improvements are recommended:
 - Converting Eastman Street to a pedestrian space north of N. Avenue (Route 28) to
 Miln Street and south of N. Avenue (Route 28) to Union Avenue.
 - Eliminating the existing skewed intersection and traffic signal at N. Avenue (Route 28)
 Eastman Street.
 - Installation of a new traffic signal and capacity improvements at N. Avenue (Route 28) & Miln Street.
 - o Geometric and signal improvements at the intersection of N. Avenue (Route 28) & N Union Avenue.
 - Othe pedestrian improvements in the area.

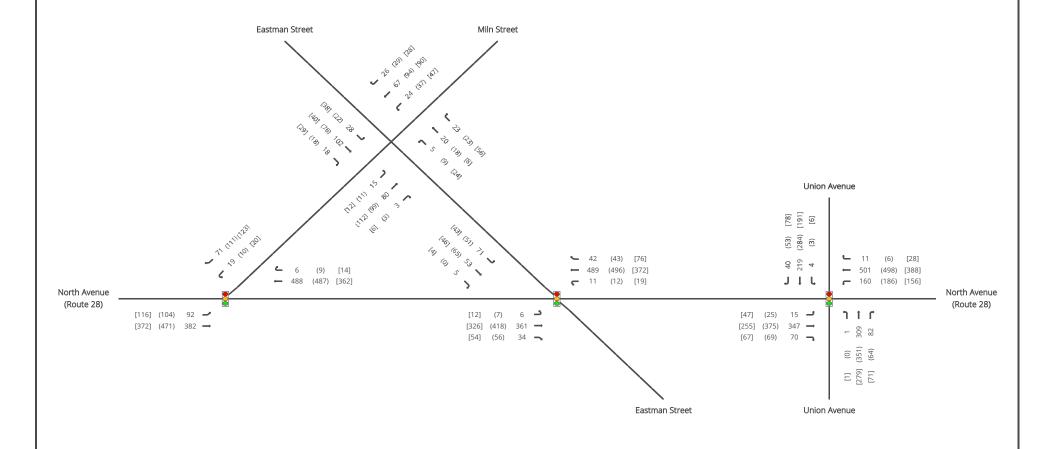
N. Avenue (Route 28) currently intersects Eastman Street through a curve, is offset, and the intersection angle is skewed. This existing geometry creates undesirable conditions for both motorists and pedestrians to traverse through the area. The intersection is approximately 200' wide with three (3) crosswalk locations and limited visibility. Eliminating this intersection and relocating the traffic signal to North Avenue (Route 28) & Miln Street will more conventional defined intersection with fewer conflict points and increased visibility along North Avenue (Route 28). The relocation of the traffic signal will provide safety benefits to all users, including motorists and pedestrians.

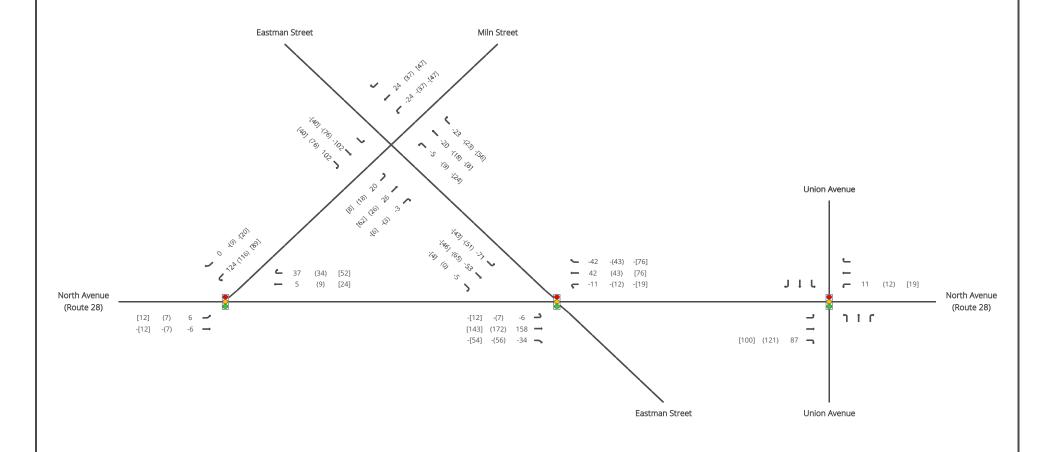
2. The expanded public realm created by closing the two Eastman Street segments will increase pedestrian safety and regional connectivity in the downtown area of Cranford. NJ TRANSIT bus route 113 runs along N. Avenue and the NJ TRANSIT Raritan Valley Rail Line Cranford Station is just east of the study area. Additionally, the proposed pedestrian realms will connect the Post Office Plaza and Eastman Plaza parks to the N. Avenue pedestrian realm and local businesses. The proposed improvements are consistent with guidance in New Jersey Department of Transportation (NJDOT) Complete Streets policy to design streets with safe access for all users, and NJ's Strategic Highway Safety Plan (SHSP) to reduce serious injuries and fatalities on all public roads, and the Safe Routes to Transit Program.

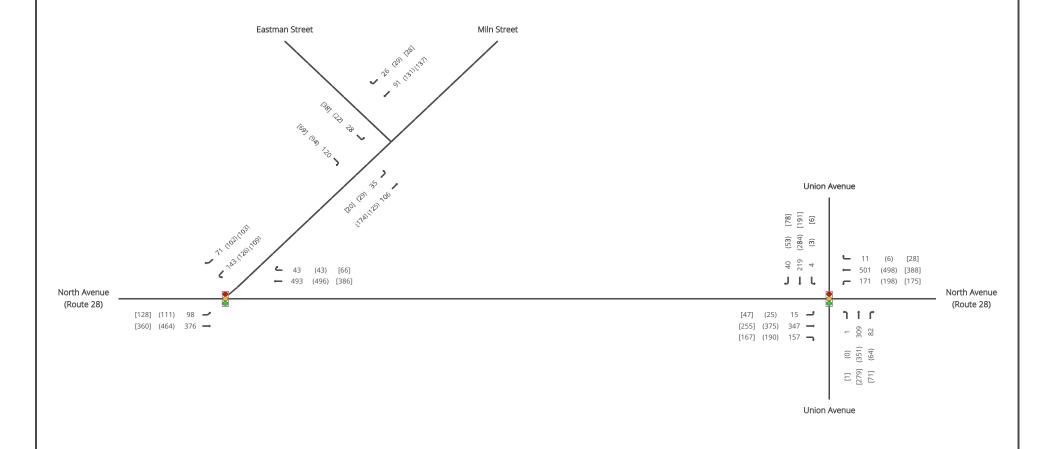

- 3. Under the Improved condition, all movements at the intersection of North Avenue (Route 28) & Union Avenue will continue to operate at or near Existing Levels of Service during all peak hours studied. Overall intersection Levels of Service will be maintained during all peak hours studied.
- 4. Under the Improved condition, all movements at the proposed signalization at the intersection of North Avenue (Route 28) & Miln Street will operate at Levels of Service "C" or better during all peak hours studied. The intersection will operate at an overall Level of Service "B" during all peak hours studied.
- 5. At the intersection of Eastman Street & Miln Street, the northeast-bound and southwest-bound approaches of Miln Street will operate freely, while the southeast-bound approach of Eastman Street will remain stop controlled. Under the Improved Condition, all intersection movements will operate at Levels of Service "B" or better during all peak hours studied.


R:\Projects\A-D\CDT\CDT0090\Reports\Traffic\Docs\240517_epr_TIS.docx

Traffic Improvement Study


Appendix A | Traffic Figures


Colliers	Eastman Street Closure	Figure 1
	Project No. CDT0090	
Engineering & Design	Township of Cranford, Union County, New Jersey	Study Area Location Map


lî	Colliers	Eastman Street Closure	Legend		Figure 3
		Project No. CDT0090	AM Peak Hour: ### Through M PM Peak Hour: (###) Turning M	vement: —	2024 Existing Conditions
Ľ	ngineering & Design	Township of Cranford, Union County, New Jersey	SAT Peak Hour: [###] Signalized Into	rsection:	AM, PM, & SAT Peak Hours

Collie	Eastman Street Closure	Legend	Figure 4
	Project No. CDT0090	AM Peak Hour: ### Through Movement: ← PM Peak Hour: (###) Turning Movement: ←	Redistributed Trips
Enginee & Design	ng Township of Cranford, Union County, New Jersey	SAT Peak Hour: [###] Signalized Intersection:	AM, PM, & SAT Peak Hours

Collier	Eastman Street Closure	Legend		Figure 5
Facilities	Project No. CDT0090	AM Peak Hour: ### PM Peak Hour: (###)	Through Movement: — Turning Movement: —	2024 Improved Conditions
& Desig	Township of Cranford, Union County, New Jersey	SAT Peak Hour: [###]	Signalized Intersection:	AM, PM, & SAT Peak Hours

Traffic Improvement Study

Appendix B | Traffic Count Data

Thu Sep 21, 2023

Full Length (7 AM-9 AM, 4 PM-6 PM, 11 AM-1 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111136, Location: 40.655757, -74.305411, Site Code: 1

Leg	North A						North A								venue				Eastman A						
Direction	Eastbou						Westbou							bound					Southbou						
Time	L			U	App	Ped*	L	Т		U	App	Ped*	L	Т	R	U	App	Ped*	L	T		U	App	Ped*	
2023-09-21 7:00AM	_			0	69	4	0	125	9	0	134	4	0	0	0	0	0	0	6	6	0		12	1	215
7:15AM	_				71	2	3	108	5	0	116	4	0	0	0	0	0	0	7	4	0		11	2	198
7:30AM	_				71	7	1	102	10	0	113	11	0	0	0	0	0	1	10	10	1		21	8	205
7:45AM			8		99	4	2	126	8	0	136	9	0	0	0	0	0	1	24	15	0		39	1	274
Hourly Total			21		310	17	6	461	32	0	499	28	0		0	0	0	2	47	35		0	83	12	892
8:00AM		92		0	100	9	1	100	10	0	111	11	0	0	0	0	0	6	15	21	4		40	5	251
8:15AM	_			_	94	5	2	113	9	0	124	7	0	0	0	0	0	7	10	9	1		20	5	238
8:30AM	1 2		9		99	3	2	110	9	0	121	11	0	0	0	0	0	6	16	5	0		21	7	241
8:45AM			14		98	4	2	94	9	0	105	16	0	0	0	2	2	7	7	8	1		16	11	221
Hourly Total			39		391	21	7	417	37	0	461	45		0	0	2	2	26	48	43	6		97	28	951
4:00PM			14		98	5	3	124	11	0	138	10	0	0	0	0	0	5	11	11	0		22	11	258
4:15PM	1 2		10		110	3	1	114	9	0	124	6	0	0	0	0	0	0	9	18	0		27	4	261
4:30PM	_		10	0	106	6	2	97	8	0	107	10	0	0	0	0	0	1	18	5	0		23	7	236
4:45PM	_		14	_	103	3	3	121	9	0	133	13	0	0	0	0	0	8	6	21	0		27	3	263
Hourly Total	_		48		417	17	9	456	37	0	502	39	0	0	0	0	0	14	44	55		0	99	25	1018
5:00PM	_		12		116	2	1	97	8	0	106	6	0	0	0	0	0	16	14	13	1		28	8	250
5:15PM	0		9		127	6	0	83	11	0	94	10	0	0	0	0	0	2	16	17	0		33	4	254
5:30PM			22	_	119	6	3	95	9	0	107	19	0	0	0	1	1	9	15	23	0		38	8	265
5:45PM			11		106	7	3	93	17	0	113	15		0	0	2	2	6	16	17	0		33	11	254
Hourly Total	_		54		468	21	7	368	45	0	420	50	0	0	0	3	3	33	61	70		0	132	31	1023
2023-09-23 11:00AM	2		10		83	10	2	91	15	0	108	6	0	0	0	2	2	4	5	9	0		14	20	207
11:15AM	1 4		13	0	94	14	7	99	23	0	129	12	0	0	0	3	3	7	14	10	2		26	31	252
11:30AM	1 4		19	0	101	11	4	78	16	0	98	20	0	0	0	1	1	5	13	8	0		21	21	221
11:45AM					87	12	4	81	16	0	101	4	0	0	1	0	1	4	10	13		0	25	37	214
Hourly Total			51		365	47	17	349	70	0	436	42	0	0	1	6	7	20	42	40		0	86	109	894
12:00PM	1 2		20	0	96	7	3	71	22	0	96	23	0	0	1	0	1	10	5	8	2		15	34	208
12:15PM	6			0	109	7	6	83	18	0	107	29	0	0	0	0	0	14	15	8	2		25	37	241
12:30PM	_		13		90	3	3	112	12	0	127	33	_	0	0	0	0	14	11	17		0	31	52	248
12:45PM	_	67	17		85	5	3	77	14	0	94	15	0	0	0	0	0	5	17	7	2		26	19	205
Hourly Total	1 9	300	71	0	380	22	15	343	66	0	424	100	0	0	1	0	1	43	48	40	9	0	97	142	902
Total	38	2009	284	0	2331	145	61	2394	287	0	2742	304	0	0	2	11	13	138	290	283	21	0	594	347	5680
% Approach	1.6%	86.2%	12.2%	0%	-	-	2.2%	87.3%	10.5%	0%	-	-	0%	0% 1	15.4%	84.6%	-	-	48.8%	47.6%	3.5%	0%	-	-	
% Total	0.7%	35.4%	5.0%	0%	41.0%	-	1.1%	42.1%	5.1%	0%	48.3%	-	0%	0%	0%	0.2%	0.2%	-	5.1%	5.0%	0.4%	0%	10.5%	-	
Lights		1931	283	0	2251	-	61	2326	280	0	2667	-	0	0	2	11	13	-	286	282	21		589	-	5520
% Lights	97.4%	96.1%	99.6%	0%	96.6%	-	100%	97.2%	97.6%	0%	97.3%	-	0%	0%	100%	100%	100%	-	98.6%	99.6%	100%	0%	99.2%	-	97.2%
Articulated Trucks	0	7	0	0	7	-	0	8	1	0	9	-	0	0	0	0	0	-	0	0	0	0	0	-	16
% Articulated Trucks	0%	0.3%	0%	0%	0.3%	-	0%	0.3%	0.3%	0%	0.3%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	_	0.3%
Buses and Single-Unit Trucks	1	71	1	0	73	-	0	60	6	0	66	-	0	0	0	0	0	-	4	1	0	0	5		144

Leg		North Av					North Av						Eastman A					Eastman A						
Dire	ection	Eastboun	d				Westbou	nd					Northbound	d				Southbou	nd					
Tim	e	L	T	R U	App	Ped*	L	T	R	U	App	Ped*	L T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
	% Buses and Single-Unit Trucks	2.6%	3.5%	0.4% 0%	3.1%	-	0%	2.5%	2.1% 0)%	2.4%	-	0% 0%	0%	0%	0%	-	1.4%	0.4%	0% (0%	0.8%	-	2.5%
	Pedestrians	-	-		-	143	-	-	-	-	-	295		-	-	-	137	-	-	-	-	-	346	
	% Pedestrians	-	-		-	98.6%	-	-	-	-	-	97.0%		-	-	-	99.3%	-	-	-	-	-	99.7%	-
	Bicycles on Crosswalk	-	-		-	2	-	-	-	-	-	9		-	-	-	1	-	-	-	-	-	1	
	% Bicycles on Crosswalk	-	-		-	1.4%	-	-	-	-	-	3.0%		-	-	-	0.7%	-	-	-	-	-	0.3%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Provided by: Imperial Traffic & Data Collection PO Box 4637, Cherry Hill, NJ, 08003, US

Thu Sep 21, 2023

AM Peak (Sep 21 2023 7:45AM - 8:45 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111136, Location: 40.655757, -74.305411, Site Code: 1

Leg	North A						North A							man .		iue			Eastman A						
Direction Time	Eastbou	na T	D	11	A ===	Dod*	Westbou	na T	D	TT	A ===	Dod*	NOF	thbou T		TI	A	Ped*	Southbou	т	D	TT	A ===	Ped*	Tue
	L		R	U	App	Ped*	L			U	App	Ped*	L		R		App	Pea*	L		R	U	App	Pea*	
2023-09-21 7:45AN	_	91	8		99	4	2	126	8	0	136	9	0	0	0		0	1	24	15	0	0	39	1	274
8:00AM	I 1	92	7	0	100	9	1	100	10	0	111	11	0	0	0	0	0	6	15	21	4	0	40	5	251
8:15AM	1 3	82	9	0	94	5	2	113	9	0	124	7	0	0	0	0	0	7	10	9	1	0	20	5	238
8:30AN	1 2	88	9	0	99	3	2	110	9	0	121	11	0	0	0	0	0	6	16	5	0	0	21	7	241
Tota	l 6	353	33	0	392	21	7	449	36	0	492	38	0	0	0	0	0	20	65	50	5	0	120	18	1004
% Approach	1.5%	90.1%	8.4%	0%	-	-	1.4%	91.3%	7.3%	0%	-	-	0%	0%	0%	0%	-	-	54.2%	41.7%	4.2%	0%	-	-	-
% Tota	0.6%	35.2%	3.3%	0%	39.0%	-	0.7%	44.7%	3.6%	0%	49.0%	-	0%	0%	0%	0%	0%	-	6.5%	5.0%	0.5%	0%	12.0%	-	-
PHI	0.500	0.959	0.917	-	0.980	-	0.875	0.891	0.900	-	0.904	-	-	-	-	-	-	-	0.677	0.595	0.313	-	0.750	-	0.916
Lights	6	334	33	0	373	-	7	427	35	0	469	-	0	0	0	0	0	-	63	50	5	0	118	-	960
% Lights	100%	94.6%	100%	0%	95.2%	-	100%	95.1%	97.2%	0%	95.3%	-	0%	0%	0%	0%	-	-	96.9%	100%	100%	0%	98.3%	-	95.6%
Articulated Trucks	0	2	0	0	2	-	0	3	0	0	3	-	0	0	0	0	0	-	0	0	0	0	0	-	5
% Articulated Trucks	0%	0.6%	0%	0%	0.5%	-	0%	0.7%	0%	0%	0.6%	-	0%	0%	0%	0%	-	-	0%	0%	0%	0%	0%	-	0.5%
Buses and Single-Unit Trucks	0	17	0	0	17	-	0	19	1	0	20	-	0	0	0	0	0	-	2	0	0	0	2	-	39
% Buses and Single-Unit Trucks	0%	4.8%	0%	0%	4.3%	-	0%	4.2%	2.8%	0%	4.1%	-	0%	0%	0%	0%	-	-	3.1%	0%	0%	0%	1.7%	-	3.9%
Pedestrians	-	-	-	-	-	21	-	-	-	-	-	35	-	-	-	-	-	20	-	-	-	-	-	18	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	92.1%	-	-	-	-	-	100%	-	-	-	-	-	100%	-
Bicycles on Crosswall	-	-	-	-	-	0	-	-	-	-	-	3	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswall	-	-	-	-	-	0%	-	-	-	-	-	7.9%	-	-	-	-	-	0%	1	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Sep 21, 2023

Forced Peak (Sep 21 2023 4PM - 5 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111136, Location: 40.655757, -74.305411, Site Code: 1

Leg	North Av	enue/					North A	venue					East	man A	\ven	ue			Eastman A	Avenue					
Direction	Eastboun	ıd					Westbou	nd					Nort	hboui	nd				Southbou	nd					
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2023-09-21 4:00PM	3	81	14	0	98	5	3	124	11	0	138	10	0	0	0	0	0	5	11	11	0	0	22	11	258
4:15PM	2	98	10	0	110	3	1	114	9	0	124	6	0	0	0	0	0	0	9	18	0	0	27	4	261
4:30PM	2	94	10	0	106	6	2	97	8	0	107	10	0	0	0	0	0	1	18	5	0	0	23	7	236
4:45PM	0	89	14	0	103	3	3	121	9	0	133	13	0	0	0	0	0	8	6	21	0	0	27	3	263
Total	. 7	362	48	0	417	17	9	456	37	0	502	39	0	0	0	0	0	14	44	55	0	0	99	25	1018
% Approach	1.7%	86.8%	11.5%	0%	-	-	1.8%	90.8%	7.4%	0%	-	-	0%	0%	0%	0%	-	-	44.4%	55.6%	0%	0%	-	-	-
% Total	0.7%	35.6%	4.7%	0%	41.0%	-	0.9%	44.8%	3.6%	0%	49.3%	-	0%	0%	0%	0%	0%	-	4.3%	5.4%	0%	0%	9.7%	-	-
PHF	0.583	0.923	0.857	-	0.948	-	0.750	0.919	0.841	-	0.909	-	-	-	-	-	-	-	0.611	0.655	-	-	0.917	-	0.968
Lights	6	352	48	0	406	-	9	453	36	0	498	-	0	0	0	0	0	-	44	55	0	0	99	-	1003
% Lights	85.7%	97.2%	100%	0%	97.4%	-	100%	99.3%	97.3%	0%	99.2%	-	0%	0%	0%	0%	-	-	100%	100%	0%	0%	100%	-	98.5%
Articulated Trucks	0	1	0	0	1	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	1
% Articulated Trucks	0%	0.3%	0%	0%	0.2%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	-	-	0%	0%	0%	0%	0%	-	0.1%
Buses and Single-Unit Trucks	1	9	0	0	10	-	0	3	1	0	4	-	0	0	0	0	0	-	0	0	0	0	0	-	14
% Buses and Single-Unit Trucks	14.3%	2.5%	0%	0%	2.4%	-	0%	0.7%	2.7%	0%	0.8%	-	0%	0%	0%	0%	-	-	0%	0%	0%	0%	0%	-	1.4%
Pedestrians	-	-	-	-	-	15	-	-	-	-	-	38	-	-	-	-	-	13	-	-	-	-	-	24	
% Pedestrians	-	-	-	-	-	88.2%	-	-	-	-	_	97.4%	-	-	-	-	-	92.9%	-	-	-	-	-	96.0%	-
Bicycles on Crosswalk	_	-	-	-	-	2	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	1	
% Bicycles on Crosswalk	-	-	-	-	-	11.8%	-	-	-	-	-	2.6%	-	-	-	-	-	7.1%	-	-	-	-	-	4.0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Forced Peak (Sep 23 2023 11AM - 12 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111136, Location: 40.655757, -74.305411, Site Code: 1

Leg Direction	North A Eastbou						North A Westboo						Eastm North		venue d				Eastman . Southbou						
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2023-09-23 11:00AM	2	71	10	0	83	10	2	91	15	0	108	6	0	0	0	2	2	4	5	9	0	0	14	20	207
11:15AM	4	77	13	0	94	14	7	99	23	0	129	12	0	0	0	3	3	7	14	10	2	0	26	31	252
11:30AM	4	78	19	0	101	11	4	78	16	0	98	20	0	0	0	1	1	5	13	8	0	0	21	21	221
11:45AM	2	76	9	0	87	12	4	81	16	0	101	4	0	0	1	0	1	4	10	13	2	0	25	37	214
Total	12	302	51	0	365	47	17	349	70	0	436	42	0	0	1	6	7	20	42	40	4	0	86	109	894
% Approach	3.3%	82.7%	14.0%	0%	-	-	3.9%	80.0%	16.1%	0%	-	-	0% ()%	14.3%	85.7%	-	-	48.8%	46.5%	4.7%	0%	-	-	-
% Total	1.3%	33.8%	5.7%	0%	40.8%	-	1.9%	39.0%	7.8%	0%	48.8%	-	0% ()%	0.1%	0.7%	0.8%	-	4.7%	4.5%	0.4%	0%	9.6%	-	-
PHF	0.750	0.968	0.671	-	0.903	-	0.607	0.881	0.761	-	0.845	-	-	-	0.250	0.500	0.583	-	0.750	0.769	0.500	-	0.827	-	0.887
Lights	12	297	51	0	360	-	17	343	69	0	429	-	0	0	1	6	7	-	42	40	4	0	86	-	882
% Lights	100%	98.3%	100%	0%	98.6%	-	100%	98.3%	98.6%	0%	98.4%	-	0% ()%	100%	100%	100%	-	100%	100%	100%	0%	100%	-	98.7%
Articulated Trucks	0	0	0	0	0	-	0	2	0	0	2	-	0	0	0	0	0	-	0	0	0	0	0	-	2
% Articulated Trucks	0%	0%	0%	0%	0%	-	0%	0.6%	0%	0%	0.5%	-	0% ()%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0.2%
Buses and Single-Unit Trucks	0	5	0	0	5	-	0	4	1	0	5	-	0	0	0	0	0	-	0	0	0	0	0	-	10
% Buses and Single-Unit Trucks	0%	1.7%	0%	0%	1.4%	-	0%	1.1%	1.4%	0%	1.1%	-	0% ()%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	1.1%
Pedestrians	-	-	-	-	-	47	-	-	-	-	-	42	-	-	-	-	-	20	-	-	-	-	-	109	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Sep 21, 2023

Full Length (7 AM-9 AM, 4 PM-6 PM, 11 AM-1 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111139, Location: 40.65583, -74.306427, Site Code: 2

Leg	North Avenue	,				North Avenu	ie				Milnn Street					
Direction	Eastbound					Westbound					Southbound					
Time	L	T	U	App	Ped*	T	R	U	App	Ped*	L	R	U	Арр	Ped*	Int
2023-09-21 7:00AN	1 24	96	0	120	0	125	0	0	125	3	4	26	0	30	3	275
7:15AN	1 16	92	0	108	0	106	0	0	106	2	0	18	0	18	3	232
7:30AN	1 16	97	0	113	0	99	3	0	102	1	2	15	0	17	4	232
7:45AN	1 30	87	0	117	0	132	0	0	132	0	6	15	0	21	2	270
Hourly Tota	1 86	372	0	458	0	462	3	0	465	6	12	74	0	86	12	1009
8:00AM	1 22	84	0	106	0	106	4	0	110	0	2	18	0	20	6	236
8:15AM	1 20	84	0	104	0	117	0	0	117	2	2	12	0	14	1	235
8:30AM	18	89	0	107	0	108	2	0	110	1	3	14	0	17	3	234
8:45AM	1 22	73	0	95	0	97	0	0	97	0	0	18	0	18	2	210
Hourly Tota	l 82	330	0	412	0	428	6	0	434	3	7	62	0	69	12	
4:00PN	18	109	0	127	0	123	6	1	130	0	4	23	0	27	1	284
4:15PM	1 30	129	0	159	0	115	0	0	115	0	2	34	0	36	0	310
4:30PN	1 26	120	0	146	1	100	2	0	102	1	2	26	0	28	0	276
4:45PN		103	0	131	0		0	0	121	0	2	26	0	28	1	280
Hourly Tota	l 102	461	0	563	1	459	8	1	468	1	10	109	0	119	2	1150
5:00PN		92	0	113	0	99	2	0	101	0	3	25	0	28	2	242
5:15PM	1 22	101	0	123	1	100	1	0	101	4	4	34	0	38	5	262
5:30PM	1 24	84	0	108	2	94	2	0	96	0	3	18	0	21	1	225
5:45PN		84	0	114	0	95	2	0	97	2	1	18	0	19	6	230
Hourly Tota	l 97	361	0	458	3	388	7	0	395	6	11	95	0	106	14	959
2023-09-23 11:00AN	1 32	98	0	130	0	88	1	0	89	0	7	30	0	37	0	256
11:15AN	1 29	98	0	127	0	96	8	0	104	2	3	24	0	27	0	258
11:30AN		84	0	120	0	78	2	0	80	0	4	34	0	38	4	238
11:45AN	16	84	0	100	0	84	3	0	87	0	6	32	0	38	2	225
Hourly Tota		364	0	477	0	346	14	0	360	2	20	120	0	140	6	977
12:00PN		90	0	114	0	73	5	0	78	0	3	21	0	24	4	216
12:15PN		84	0	98	0		3	0	86	0	2	28	0	30	2	214
12:30PM		96	0	118	0	117	1	0	118	0	3	29	0	32	2	268
12:45PN		80	0	98	0		5	0	84	1	3	18	0	21	4	203
Hourly Tota	l 78	350	0	428	0	352	14	0	366	1	11	96	0	107	12	901
Tota	l 558	2238	0	2796	4	2435	52	1	2488	19	71	556	0	627	58	5911
% Approach	a 20.0%	80.0%	0%	-	-	97.9%	2.1%	0%	-	-	11.3%	88.7%	0%	-	-	
% Tota	9.4%	37.9%	0%	47.3%	_	41.2%	0.9%	0%	42.1%	-	1.2%	9.4%	0%	10.6%	-	
Light		2170	0	2716		2366	52	1	2419	-	67	548	0	615	-	5750
% Light:	97.8%	97.0%	0%	97.1%	-	97.2%	100%	100%	97.2%	-	94.4%	98.6%	0%	98.1%	-	97.3%
Articulated Trucks	1	9	0	10	-	8	0	0	8	-	0	2	0	2	-	20
% Articulated Trucks	0.2%	0.4%	0%	0.4%	-	0.3%	0%	0%	0.3%		0%	0.4%	0%	0.3%	-	0.3%
Buses and Single-Unit Trucks	11	59	0	70	_	61	0	0	61	-	4	6	0	10	-	141

Leg	North Avenue					North Avenue					Milnn Street					
Direction	Eastbound					Westbound					Southbound					
Time	L	T	U	App	Ped*	T	R	U	App	Ped*	L	R	U	App	Ped*	Int
% Buses and Single-Unit Trucks	2.0%	2.6%	0%	2.5%	-	2.5%	0%	0%	2.5%	-	5.6%	1.1%	0%	1.6%	-	2.4%
Pedestrians	-	-	-	-	3	-	-	-	-	19	-	-	-	-	56	
% Pedestrians	-	-	-	-	75.0%	-	-	-	-	100%	-	-	-	-	96.6%	-
Bicycles on Crosswall	-	-	-	-	1	-	-	-	-	0	-	-	-	-	2	
% Bicycles on Crosswalk	-	-	-	-	25.0%	-	-	-	-	0%	-	-	-	-	3.4%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Forced Peak (Sep 21 2023 7:45AM - 8:45 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111139, Location: 40.65583, -74.306427, Site Code: 2

Leg	North Avenue					North Avenue					Milnn Street					
Direction	Eastbound					Westbound					Southbound					
Time	L	T	U	Арр	Ped*	T	R	U	App	Ped*	L	R	U	App	Ped*	Int
2023-09-21 7:45AM	30	87	0	117	0	132	0	0	132	0	6	15	0	21	2	270
8:00AM	22	84	0	106	0	106	4	0	110	0	2	18	0	20	6	236
8:15AM	20	84	0	104	0	117	0	0	117	2	2	12	0	14	1	235
8:30AM	18	89	0	107	0	108	2	0	110	1	3	14	0	17	3	234
Total	90	344	0	434	0	463	6	0	469	3	13	59	0	72	12	975
% Approach	20.7%	79.3%	0%	-	-	98.7%	1.3%	0%	-	-	18.1%	81.9%	0%	-	-	-
% Total	9.2%	35.3%	0%	44.5%	-	47.5%	0.6%	0%	48.1%	-	1.3%	6.1%	0%	7.4%	-	-
PHF	0.750	0.966	-	0.927	-	0.877	0.375	-	0.888	-	0.542	0.819	-	0.857	-	0.903
Lights	85	319	0	404	-	440	6	0	446	-	13	57	0	70	-	920
% Lights	94.4%	92.7%	0%	93.1%	-	95.0%	100%	0%	95.1%	-	100%	96.6%	0%	97.2%	-	94.4%
Articulated Trucks	1	3	0	4	-	3	0	0	3	-	0	0	0	0	-	7
% Articulated Trucks	1.1%	0.9%	0%	0.9%	-	0.6%	0%	0%	0.6%	-	0%	0%	0%	0%	-	0.7%
Buses and Single-Unit Trucks	4	22	0	26	-	20	0	0	20	-	0	2	0	2	-	48
% Buses and Single-Unit Trucks	4.4%	6.4%	0%	6.0%	-	4.3%	0%	0%	4.3%	-	0%	3.4%	0%	2.8%	-	4.9%
Pedestrians	-	-	-	-	0	-	-	-	-	3	-	-	-	-	11	
% Pedestrians	-	-	-	-	-	-	-	-	-	100%	-	-	-	-	91.7%	-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	0%	-	-	-	-	8.3%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

PM Peak (Sep 21 2023 4PM - 5 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111139, Location: 40.65583, -74.306427, Site Code: 2

Leg	North Avenue					North Avenue	2				Milnn Street					
Direction	Eastbound					Westbound					Southbound					
Time	L	T	U	App	Ped*	T	R	U	App	Ped*	L	R	U	App	Ped*	Int
2023-09-21 4:00PM	18	109	0	127	0	123	6	1	130	0	4	23	0	27	1	284
4:15PM	30	129	0	159	0	115	0	0	115	0	2	34	0	36	0	310
4:30PM	26	120	0	146	1	100	2	0	102	1	2	26	0	28	0	276
4:45PM	28	103	0	131	0	121	0	0	121	0	2	26	0	28	1	280
Total	102	461	0	563	1	459	8	1	468	1	10	109	0	119	2	1150
% Approach	18.1%	81.9%	0%	-	-	98.1%	1.7%	0.2%	-	-	8.4%	91.6%	0%	-	-	-
% Total	8.9%	40.1%	0%	49.0%	-	39.9%	0.7%	0.1%	40.7%	-	0.9%	9.5%	0%	10.3%	-	-
PHF	0.850	0.893	-	0.885	-	0.933	0.333	0.250	0.900	-	0.625	0.801	-	0.826	-	0.927
Lights	100	452	0	552	-	457	8	1	466	-	9	107	0	116	-	1134
% Lights	98.0%	98.0%	0%	98.0%	-	99.6%	100%	100%	99.6%	-	90.0%	98.2%	0%	97.5%	-	98.6%
Articulated Trucks	0	2	0	2	-	0	0	0	0	-	0	0	0	0	-	2
% Articulated Trucks	0%	0.4%	0%	0.4%	-	0%	0%	0%	0%	-	0%	0%	0%	0%	-	0.2%
Buses and Single-Unit Trucks	2	7	0	9	-	2	0	0	2	-	1	2	0	3	-	14
% Buses and Single-Unit Trucks	2.0%	1.5%	0%	1.6%	-	0.4%	0%	0%	0.4%	-	10.0%	1.8%	0%	2.5%	-	1.2%
Pedestrians	-	-	-	-	1	-	-	-	-	1	-	-	-	-	2	
% Pedestrians	-	-	-	-	100%	-	-	-	-	100%	-	-	-	-	100%	-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	0%	-	-	-	-	0%	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Midday Peak (WKND) (Sep 23 2023 11AM - 12 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111139, Location: 40.65583, -74.306427, Site Code: 2

Leg	North Avenue					North Avenue					Milnn Street					
Direction	Eastbound					Westbound					Southbound					
Time	L	T	U	Арр	Ped*	T	R	U	Арр	Ped*	L	R	U	Арр	Ped*	Int
2023-09-23 11:00AM	32	98	0	130	0	88	1	0	89	0	7	30	0	37	0	256
11:15AM	29	98	0	127	0	96	8	0	104	2	3	24	0	27	0	258
11:30AM	36	84	0	120	0	78	2	0	80	0	4	34	0	38	4	238
11:45AM	16	84	0	100	0	84	3	0	87	0	6	32	0	38	2	225
Total	113	364	0	477	0	346	14	0	360	2	20	120	0	140	6	977
% Approach	23.7%	76.3%	0%	-	-	96.1%	3.9%	0%	-	-	14.3%	85.7%	0%	-	-	-
% Total	11.6%	37.3%	0%	48.8%	-	35.4%	1.4%	0%	36.8%	-	2.0%	12.3%	0%	14.3%	-	-
PHF	0.785	0.929	-	0.917	-	0.901	0.438	-	0.865	-	0.714	0.882	-	0.921	-	0.947
Lights	112	359	0	471	-	340	14	0	354	-	19	120	0	139	-	964
% Lights	99.1%	98.6%	0%	98.7%	-	98.3%	100%	0%	98.3%	-	95.0%	100%	0%	99.3%	-	98.7%
Articulated Trucks	0	0	0	0	-	1	0	0	1	-	0	0	0	0	-	1
% Articulated Trucks	0%	0%	0%	0%	-	0.3%	0%	0%	0.3%	-	0%	0%	0%	0%	-	0.1%
Buses and Single-Unit Trucks	1	5	0	6	-	5	0	0	5	-	1	0	0	1	-	12
% Buses and Single-Unit Trucks	0.9%	1.4%	0%	1.3%	-	1.4%	0%	0%	1.4%	-	5.0%	0%	0%	0.7%	-	1.2%
Pedestrians	-	-	-	-	0	-	-	-	-	2	-	-	-	-	6	
% Pedestrians	-	-	-	-	-	-	-	-	-	100%	-	-	-	-	100%	-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	0%	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Full Length (7 AM-9 AM, 4 PM-6 PM, 11 AM-1 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111660, Location: 40.656171, -74.306153, Site Code: 3

Leg	Eastma	n Street					Eastman	Street					Miln Str	eet					Miln Stre	eet					
Direction	Eastbou	ınd					Westbou	ınd					Northbo	und					Southboo	und					
Time	L	T	R	U	Арр	Ped*	L	T	R	U	App	Ped*	L	T	R	U	Арр	Ped*	L	Т	R	U	Арр	Ped*	Int
2023-09-21 7:00AM	0 1	7	6	0	13	0	3	3	0	0	6	0	0	5	0	0	5	1	4	4	0	0	8	1	32
7:15AM	1 4	8	4	0	16	4	3	2	4	0	9	0	1	4	0	0	5	3	2	5	1	0	8	5	38
7:30AM	1 2	14	2	0	18	0	1	3	1	0	5	4	4	13	0	0	17	2	4	12	5	0	21	7	61
7:45AM	11	45	6	0	62	1	0	3	3	0	6	0	5	20	0	0	25	0	6	19	13	0	38	7	131
Hourly Tota	l 17	74	18	0	109	5	7	11	8	0	26	4	10	42	0	0	52	6	16	40	19	0	75	20	262
8:00AM	1 3	26	6	0	35	1	1	4	7	0	12	0	5	20	0	0	25	7	5	19	2	0	26	4	98
8:15AM	6	12	2	0	20	3	1	2	2	0	5	0	1	14	0	1	16	2	7	14	5	0	26	2	67
8:30AM	1 7	17	4	0	28	3	3	3	3	0	9	1	3	12	2	0	17	7	5	14	5	0	24	1	78
8:45AM	1 4	9	4	0	17	1	1	3	1	0	5	3	4	26	0	0	30	1	5	13	11	0	29	3	81
Hourly Tota	1 20	64	16	0	100	8	6	12	13	0	31	4	13	72	2	1	88	17	22	60	23	0	105	10	
4:00PM	1 5	19	1	0	25	6	3	6	7	0	16	1	3	19	1	0	23	9	6	24	4	1	35	5	99
4:15PM	I 7	21	8	0	36	11	3	5	2	0	10	10	4	26	2	0	32	11	11	11	11	0	33	19	111
4:30PM	1 5	17	6	0	28	7	1	1	4	0	6	3	2	22	0	0	24	7	5	22	7	0	34	14	92
4:45PM	1 5	17	3	0	25	7	2	5	6	0	13	2	2	24	0	0	26	3	14	26	5	0	45	5	109
Hourly Total	1 22	74	18	0	114	31	9	17	19	0	45	16	11	91	3	0	105	30	36	83	27	1	147	43	411
5:00PM	1 9	21	4	0	34	0	4	3	11	0	18	1	4	19	2	0	25	0	5	19	5	0	29	2	106
5:15PM	14	31	5	0	50	1	2	1	10	0	13	1	2	28	1	0	31	2	7	29	3	0	39	9	133
5:30PM	8 1	31	5	0	44	5	1	3	6	0	10	0	2	26	0	0	28	1	5	21	8	0	34	8	116
5:45PM	1 9	31	11	0	51	2	2	5	4	0	11	1	4	23	0	0	27	1	6	15	8	0	29	18	
Hourly Total	1 40	114	25	0	179	8	9	12	31	0	52	3	12	96	3	0	111	4	23	84	24	0	131	37	
2023-09-23 11:00AM	7	10	5	0	22	0	4	1	11	0	16	4	4	29	1	0	34	4	9	18	8	0	35	2	107
11:15AM	I 15	10	6	0	31	4	8	3	10	0	21	1	4	19	1	0	24	2	14	14	3	0	31	4	107
11:30AM	8 1	4	4	0	16	5	5	1	13	0	19	7	4	31	2	1	38	4	14	30	11	0	55	6	128
11:45AM	8 1	15	8	0	31	2	4	3	17	0	24	2	0	27	1	0	28	2	9	16	5	0	30	6	113
Hourly Total	1 38	39	23	0	100	11	21	8	51	0	80	14	12	106	5	1	124	12	46	78	27	0	151	18	455
12:00PM	I 5	8	11	0	24	3	4	2	14	0	20	5	1	33	0	0	34	0	7	22	5	0	34	14	
12:15PM			4		18	9		3	21	0	27	9	5	26	5	0	36	5	11	20	9	0	40	16	
12:30PM		19	9		43	2		6	7	0	21	5	5	31	0	0	36	2	13	24	6	0	43	13	
12:45PM	_	11	7		27	3	3	3	15	0	21	7	6	15	1	0	22	1	11	27	6	0	44	22	
Hourly Total	l 35	46	31	0	112	17	18	14	57	0	89	26	17	105	6	0	128	8	42	93	26	0	161	65	490
Total		411	131	0	714	80	70	74	179	0	323	67	75	512	19	2	608	77	185	438	146	1	770	193	2415
% Approach	24.1%	57.6%	18.3%	0%	-	-	21.7%	22.9%	55.4%	0%	-	-	12.3%	84.2%	3.1%	0.3%	-	-	24.0%	56.9%	19.0%	0.1%	-	-	
% Total	7.1%	17.0%	5.4%	0% 2	29.6%	-	2.9%	3.1%	7.4%	0%	13.4%	-	3.1%	21.2%	0.8%	0.1%	25.2%	-	7.7%	18.1%	6.0%	0%	31.9%	-	
Lights	169	408	120	0	697	-	67	71	176	0	314	-	73	503	17	2	595	-	181	430	139	1	751	-	2357
% Lights	98.3%	99.3%	91.6%	0% 9	97.6%	-	95.7%	95.9%	98.3%	0%	97.2%	-	97.3%	98.2%	89.5%	100%	97.9%	-	97.8%	98.2%	95.2%	100%	97.5%	-	97.6%
Articulated Trucks		0			2	-	1	0	0	0	1	-	0	3	0	0	3	-	1	1	1	0	3	-	9
% Articulated Trucks	0%	0%	1.5%	0%	0.3%	-	1.4%	0%	0%	0%	0.3%	-	0%	0.6%	0%	0%	0.5%	-	0.5%	0.2%	0.7%	0%	0.4%	-	0.4%
Buses and Single-Unit Trucks	3	3	9	0	15	-	2	3	3	0	8	-	2	6	2	0	10	-	3	7	6	0	16	-	49

Provided by: Imperial Traffic & Data Collection

PO Box 4637, Cherry Hill, NJ, 08003, US

Leg	Eastman	Street					Eastman	Street					Miln Stre	eet					Miln Stre	eet					
Direction	Eastbour	ıd					Westbou	nd					Northbou	ınd					Southbou	ınd					
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
% Buses and Single-Unit Trucks	1.7%	0.7%	6.9%	0%	2.1%	-	2.9%	4.1%	1.7%	0%	2.5%	-	2.7%	1.2%	10.5%	0%	1.6%	-	1.6%	1.6%	4.1%	0%	2.1%	-	2.0%
Pedestrians	-	-	-	-	-	79	-	-	-	-	-	62	-	-	-	-	-	74	-	-	-	-	-	173	
% Pedestrians	-	-	-	-	- 9	8.8%	-	-	-	-	-	92.5%	-	-	-	-	-	96.1%	-	-	-	-	-	89.6%	-
Bicycles on Crosswalk	-	-	-	-	-	1	-	-	-	-	-	5	-	-	-	-	-	3	-	-	-	-	-	20	
% Bicycles on Crosswalk	-	-	-	-	-	1.3%	-	-	-	-	-	7.5%	-	-	-	-	-	3.9%	-	-	-	-	-	10.4%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Sep 21, 2023

AM Peak (Sep 21 2023 7:45AM - 8:45 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111660, Location: 40.656171, -74.306153, Site Code: 3

Leg Direction	Eastmar Eastbou						Eastman Westbou						Miln Stre Northbou						Miln Str Southbo						
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	Арр	Ped*	L	T	R	U	App	Ped*	Int
2023-09-21 7:45AM	11	45	6	0	62	1	0	3	3	0	6	0	5	20	0	0	25	0	6	19	13	0	38	7	131
8:00AM	3	26	6	0	35	1	1	4	7	0	12	0	5	20	0	0	25	7	5	19	2	0	26	4	98
8:15AM	6	12	2	0	20	3	1	2	2	0	5	0	1	14	0	1	16	2	7	14	5	0	26	2	67
8:30AM	7	17	4	0	28	3	3	3	3	0	9	1	3	12	2	0	17	7	5	14	5	0	24	1	78
Total	27	100	18	0	145	8	5	12	15	0	32	1	14	66	2	1	83	16	23	66	25	0	114	14	374
% Approach	18.6%	69.0%	12.4%	0%	-	-	15.6%	37.5%	46.9%	0%	-	-	16.9%	79.5%	2.4%	1.2%	-	-	20.2%	57.9%	21.9%	0%	-	-	-
% Total	7.2%	26.7%	4.8%	0%	38.8%	-	1.3%	3.2%	4.0%	0%	8.6%	-	3.7%	17.6%	0.5%	0.3%	22.2%	-	6.1%	17.6%	6.7%	0%	30.5%	-	-
PHF	0.614	0.556	0.750	-	0.585	-	0.417	0.750	0.536	-	0.667	-	0.700	0.825	0.250	0.250	0.830	-	0.821	0.868	0.481	-	0.750	-	0.714
Lights	27	100	17	0	144	-	5	12	15	0	32	-	14	65	2	1	82	-	21	66	24	0	111	-	369
% Lights	100%	100%	94.4%	0%	99.3%	-	100%	100%	100%	0%	100%	-	100%	98.5%	100%	100%	98.8%	-	91.3%	100%	96.0%	0%	97.4%	-	98.7%
Articulated Trucks	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	1	0	0	0	1	-	1
% Articulated Trucks	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	4.3%	0%	0%	0%	0.9%	-	0.3%
Buses and Single-Unit Trucks	0	0	1	0	1	-	0	0	0	0	0	-	0	1	0	0	1	-	1	0	1	0	2	-	4
% Buses and Single-Unit Trucks	0%	0%	5.6%	0%	0.7%	-	0%	0%	0%	0%	0%	-	0%	1.5%	0%	0%	1.2%	-	4.3%	0%	4.0%	0%	1.8%	-	1.1%
Pedestrians	-	-	-	-	-	7	-	-	-	-	-	0	-	-	-	-	-	16	-	-	-	-	-	12	
% Pedestrians	-	-	-	-	- 8	37.5%	-	-	-	-	-	0%	-	-	-	-	-	100%	-	-	-	-	-	85.7%	_
Bicycles on Crosswalk	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	2	
% Bicycles on Crosswalk	-	-	-	-	- :	12.5%	-	-	-	-	-	100%	-	-	-	-	-	0%	-	-	-	-	-	14.3%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Forced Peak (Sep 21 2023 4PM - 5 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

Thu Sep 21, 2023

ID: 1111660, Location: 40.656171, -74.306153, Site Code: 3

Leg	Eastmar						Eastman						Miln Str						Miln Str						
Direction	Eastbou	nd					Westbou	nd					Northbo	und					Southbo	und					
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2023-09-21 4:00PM	5	19	1	0	25	6	3	6	7	0	16	1	3	19	1	0	23	9	6	24	4	1	35	5	99
4:15PM	7	21	8	0	36	11	3	5	2	0	10	10	4	26	2	0	32	11	11	11	11	0	33	19	111
4:30PM	5	17	6	0	28	7	1	1	4	0	6	3	2	22	0	0	24	7	5	22	7	0	34	14	92
4:45PM	5	17	3	0	25	7	2	5	6	0	13	2	2	24	0	0	26	3	14	26	5	0	45	5	109
Total	22	74	18	0	114	31	9	17	19	0	45	16	11	91	3	0	105	30	36	83	27	1	147	43	411
% Approach	19.3%	64.9%	15.8%	0%	-	-	20.0%	37.8%	42.2%	0%	-	-	10.5%	86.7%	2.9%	0%	-	-	24.5%	56.5%	18.4%	0.7%	-	-	-
% Total	5.4%	18.0%	4.4%	0%	27.7%	-	2.2%	4.1%	4.6%	0%	10.9%	-	2.7%	22.1%	0.7%	0% :	25.5%	-	8.8%	20.2%	6.6%	0.2%	35.8%	-	-
PHF	0.786	0.881	0.563	-	0.792	-	0.750	0.708	0.679	-	0.703	-	0.688	0.875	0.375	-	0.820	-	0.643	0.798	0.614	0.250	0.817	-	0.926
Lights	22	74	13	0	109	-	8	16	18	0	42	-	11	89	2	0	102	-	35	80	23	1	139	-	392
% Lights	100%	100%	72.2%	0%	95.6%	-	88.9%	94.1%	94.7%	0%	93.3%	-	100%	97.8%	66.7%	0% !	97.1%	-	97.2%	96.4%	85.2%	100%	94.6%	-	95.4%
Articulated Trucks	0	0	1	0	1	-	0	0	0	0	0	-	0	1	0	0	1	-	0	1	1	0	2	-	4
% Articulated Trucks	0%	0%	5.6%	0%	0.9%	-	0%	0%	0%	0%	0%	-	0%	1.1%	0%	0%	1.0%	-	0%	1.2%	3.7%	0%	1.4%	-	1.0%
Buses and Single-Unit Trucks	0	0	4	0	4	-	1	1	1	0	3	-	0	1	1	0	2	-	1	2	3	0	6	-	15
% Buses and Single-Unit Trucks	0%	0%	22.2%	0%	3.5%	-	11.1%	5.9%	5.3%	0%	6.7%	-	0%	1.1%	33.3%	0%	1.9%	-	2.8%	2.4%	11.1%	0%	4.1%	-	3.6%
Pedestrians	-	-	-	-	-	31	-	-	-	-	-	13	-	-	-	-	-	28	-	-	-	-	-	32	
% Pedestrians	-	-	-	-	- 1	100%	-	-	-	-	-	81.3%	-	-	-	-	-	93.3%	-	-	-	-	-	74.4%	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	3	-	-	-	-	-	2	-	-	-	-	-	11	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	18.8%	-	-	-	-	-	6.7%	-	-	-	-	-	25.6%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Forced Peak (Sep 23 2023 11AM - 12 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1111660, Location: 40.656171, -74.306153, Site Code: 3

Leg Direction	Eastmar						Eastman Westbou						Miln Stre						Miln Stro						
Time	Eastbou	Т	R	U	Арр	Ped*	L	Т	R	II	App		Northbou 1	Т	R	U	Арр	Ped*	L	Т	R	U	Арр	Ped*	Int
2023-09-23 11:00AM	7	10		0	22	0	4	1	11	0	16	4	4	29	1	0	34	4	9	18	8		35	2	107
11:15AM	15	10	6	0	31	4	8	3	10	0	21	1	4	19	1	0	24	2	14	14	3	0	31	4	107
11:30AM	8	4	4	0	16	5	5	1	13	0	19	7	4	31	2	1	38	4	14	30	11	0	55	6	128
11:45AM	8	15	8	0	31	2	4	3	17	0	24	2	0	27	1	0	28	2	9	16	5	0	30	6	113
Total	38	39	23	0	100	11	21	8	51	0	80	14	12	106	5	1	124	12	46	78	27	0	151	18	455
% Approach	38.0%	39.0%	23.0%	0%	-	-	26.3%	10.0%	63.8%	0%	-	-	9.7%	85.5%	4.0%	0.8%		-	30.5%	51.7%	17.9%	0%	-	-	-
% Total	8.4%	8.6%	5.1%	0%	22.0%	-	4.6%	1.8%	11.2%	0%	17.6%	-	2.6%	23.3%	1.1%	0.2%	27.3%	-	10.1%	17.1%	5.9%	0%	33.2%	-	-
PHF	0.633	0.650	0.719	-	0.806	-	0.656	0.667	0.750	-	0.833	-	0.750	0.855	0.625	0.250	0.816	-	0.821	0.650	0.614	-	0.686	-	0.889
Lights	37	38	22	0	97	-	21	8	50	0	79	-	11	106	5	1	123	-	46	76	27	0	149	-	448
% Lights	97.4%	97.4%	95.7%	0% !	97.0%	-	100%	100%	98.0%	0% !	98.8%	-	91.7%	100%	100%	100%	99.2%	-	100%	97.4%	100%	0%	98.7%	-	98.5%
Articulated Trucks	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0
% Articulated Trucks	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%
Buses and Single-Unit Trucks	1	1	1	0	3	-	0	0	1	0	1	-	1	0	0	0	1	-	0	2	0	0	2	-	7
% Buses and Single-Unit Trucks	2.6%	2.6%	4.3%	0%	3.0%	-	0%	0%	2.0%	0%	1.3%	-	8.3%	0%	0%	0%	0.8%	-	0%	2.6%	0%	0%	1.3%	-	1.5%
Pedestrians	-	-	-	-	-	11	-	-	-	-	-	14	-	-	-	-	-	12	-	-	-	-	-	15	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	83.3%	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	3	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	16.7%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Provided by: Imperial Traffic & Data Collection PO Box 4637, Cherry Hill, NJ, 08003, US

Provided by: Imperial Traffic & Data Collection PO Box 4637, Cherry Hill, NJ, 08003, US

Thu Mar 21, 2024

Full Length (7 AM-9 AM, 4 PM-6 PM, 11 AM-1 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1167483, Location: 40.65575, -74.304294, Site Code: 1

Leg			enue W	est					venue W	⁷ est				North U		enue			l .	Jnion Av	enue				
Direction	Ea	astbour	nd					Westbou	ınd					Northbo	und				Southb	ound					
Time		L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	Ј Арг	Ped*	L	Т	R	U	App	Ped*	Int
2024-03-21 7:00A	M	3	51	8	0	62	1	30	89	1	0	120	2	0	52	12	0 6 4	. 5	1	20	5	0	26	2	27.
7:15A	M	0	65	12	0	77	0	26	96	0	1	123	1	0	84	23	0 10 7	1	2	47	6	0	55	1	36
7:30A	M	4	56	15	0	75	6	33	95	0	0	128	2	0	93		0 118	9	5	46	5	0	56	5	37
7:45A	М	3	72	21	0	96	0	38	128	0	0	166	2	0	91	18	0 10 9	1	0	51	12	0	63	1	43
Hourly To	tal	10	244	56	0	310	7	127	408	1	1	537	7	0	320	78	0 398	16	8	164	28	0	200	9	144
8:00A	M	5	94	15	0	114	1	34	133	0	1	168	1	0	93	22	0 115	1	0	55	15	0	70	1	46
8:15A	M	6	85	18	0	109	4	47	136	5	0	188	2	1	63	21	0 8 5	3	2	42	5	0	49	2	43
8:30A	M	1	81	16	0	98	5	41	104	5	0	150	1	0	62	21	0 83	7	2	71	8	0	81	2	41
8:45A	M	2	80	17	0	99	8	36	120	3	0	159	2	0	94	19	0 113	1	4	48	12	0	64	4	43
Hourly To	tal	14	340	66	0	420	18	158	493	13	1	665	6	1	312	83	0 39€	12	8	216	40	0	264	9	174
4:00P	М	9	66	19	0	94	12	44	134	2	0	180	3	0	76	24	0 100	3	1	61	15	0	77	3	45
4:15P	М	3	87	17	0	107	7	38	120	2	0	160	0	0	95	11	0 10 6	2	0	72	16	0	88	7	46
4:30P	М	5	87	9	0	101	10	48	127	1	0	176	2	0	84	18	0 10 2	7	0	59	11	0	70	6	44
4:45P	М	8	82	20	0	110	8	56	117	1	0	174	4	0	96	11	0 10 7	2	2	92	11	0	105	4	49
Hourly To	tal	25	322	65	0	412	37	186	498	6	0	690	9	0	351	64	0 41 5	14	3	284	53	0	340	20	185
5:00P	М	6	87	5	0	98	14	56	118	3	0	177	9	0	81	15	0 9 6	14	0	80	12	0	92	5	46
5:15P	М	5	99	2	0	106	6	56	110	0	0	166	0	0	86	12	0 98	3	0	81	15	0	96	1	46
5:30P	М	4	97	1	0	102	8	34	121	1	0	156	10	0	83	20	0 10 3	5	1	73	16	0	90	12	45
5:45P	М	4	107	2	0	113	10	51	113	4	0	168	4	0	92	13	0 10 5	4	0	76	12	0	88	7	47
Hourly To	tal	19	390	10	0	419	38	197	462	8	0	667	23	0	342	60	0 40 2	26	1	310	55	0	366	25	185
2024-03-23 11:00A	M	17	67	12	0	96	1	43	88	8	1	140	13	0	72	14	0 8 6	6	2	47	23	0	72	2	39
11:15A	M	10	55	22	0	87	0	40	95	4	0	139	8	1	69	21	0 91	4	1	43	20	0	64	3	38
11:30A	M	8	52	16	0	76	2	41	97	7	1	146	3	0	61	23	0 8 4	. 3	1	44	15	0	60	3	36
11:45A	M	12	58	15	0	85	7	32	108	6	1	147	4	0	77	13	0 90	5	2	57	20	0	79	7	40
Hourly To	tal	47	232	65	0	344	10	156	388	25	3	572	28	1	279	71	0 351	18	6	191	78	0	275	15	154
12:00F	М	17	71	11	0	99	3	38	100	11	0	149	3	1	69	23	0 9 3	11	0	47	25	0	72	6	41
12:15P	М	16	77	9	0	102	2	40	83	12	2	137	6	0	85	16	0 101	. 3	1	46	19	0	66	0	40
12:30F	M	8	72	19	0	99	2	40	86	9	0	135	12	0	64	17	0 81	. 2	2	59	23	0	84	8	39
12:45F	М	15	58	17	0	90	3	49	79	13	1	142	3	1	75	12	0 88	2	2	61	14	0	77	9	39
Hourly To	tal	56	278	56	0	390	10	167	348	45	3	563	24	2	293	68	0 36 3	18	5	213	81	0	299	23	161
To	tal	171	1806	318	0	2295	120	991	2597	98	8	3694	97	4	1897	424	0 232 5	104	31	1378	335	0	1744	101	1005
% Approa	ch	7.5%	78.7%	13.9%	0%	-	-	26.8%	70.3%	2.7%	0.2%	-	-	0.2%	81.6%	18.2% 09	% .	-	1.8%	79.0%	19.2%	0%	-	_	
% To	tal	1.7%	18.0%	3.2%	0%	22.8%	-	9.9%	25.8%	1.0%	0.1%	36.7%	-	0%	18.9%	4.2% 09	6 23.1%	-	0.3%	13.7%	3.3%	0%	17.3%		
Ligh	ıts	166	1756	316	0	2238	-	971	2535	96	8	3610	-	4	1863	408	0 227 5	-	31	1356	330	0	1717		984
% Ligh	its 9	7.1%	97.2%	99.4%	0%	97.5%	-	98.0%	97.6%	98.0%	100%	97.7%	-	100%	98.2%	96.2% 09	6 97.8%	-	100%	98.4%	98.5%	0%	98.5%		97.89
Articulated Truc	ks	1	8	0	0	9	-	2	6	0	0	8	-	0	6	1	0 7	-	0	2	3	0	5		2
% Articulated Truc	ks	0.6%	0.4%	0%	0%	0.4%	-	0.2%	0.2%	0%	0%	0.2%	-	0%	0.3%	0.2% 09	6 0.3%	-	0%	0.1%	0.9%	0%	0.3%	_	0.39
Buses and Single-Unit Truck	ks	4	42	2	0	48	_	18	56	2	0	76	-	0	28	15	0 43	-	0	20	2	0	22		18

Leg	North Av	enue W	'est		North A	venue W	est				North U	nion Av	enue		North U	nion Av	enue		
Direction	Eastbour	nd			Westbo	und					Northbo	ound			Southbo	ound			
Time	L	T	R U	App Peo	* L	T	R	U	App	Ped*	L	T	R U	App Ped*	L	T	R U	App Ped*	k Int
% Buses and Single-Unit Trucks	2.3%	2.3%	0.6% 0%	2.1%	- 1.8%	2.2%	2.0%	0%	2.1%	-	0%	1.5%	3.5% 0%	1.8%	- 0%	1.5%	0.6% 0%	1.3%	- 1.9%
Pedestrians	-	-		- 11	7 -	-	-	-		92	-	-		- 103	-	-		- 101	1
% Pedestrians	-	-		- 97.5	% -	-	-	-	- 9	94.8%	-	-		- 99.0%	-	-		- 100%	ó -
Bicycles on Crosswalk	-	-		-	3 -	-	-	-	-	5	-	-		- 1		-		- ()
% Bicycles on Crosswalk	-	-		- 2.5	% -	-	-	-	-	5.2%	-	-		- 1.0%	-	-		- 0%	ó -

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 21, 2024

Forced Peak (Mar 21 2024 7:45AM - 8:45 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1167483, Location: 40.65575, -74.304294, Site Code: 1

Leg		venue W	Vest				North A		est					nion Av	enue				l .	nion Av	enue				
Direction	Eastbou						Westbou						Northbo						Southbo						
Time	L	Т	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-03-21 7:45AM	3	72	21	0	96	0	38	128	0	0	166	2	0	91	18	0	109	1	0	51	12	0	63	1	434
8:00AM	5	94	15	0	114	1	34	133	0	1	168	1	0	93	22	0	115	1	0	55	15	0	70	1	467
8:15AM	6	85	18	0	109	4	47	136	5	0	188	2	1	63	21	0	85	3	2	42	5	0	49	2	431
8:30AM	1	81	16	0	98	5	41	104	5	0	150	1	0	62	21	0	83	7	2	71	8	0	81	2	412
Total	. 15	332	70	0	417	10	160	501	10	1	672	6	1	309	82	0	392	12	4	219	40	0	263	6	1744
% Approach	3.6%	79.6%	16.8%	0%	-	-	23.8%	74.6%	1.5%	0.1%	-	-	0.3%	78.8%	20.9%	0%	-	-	1.5%	83.3%	15.2%	0%	-	-	-
% Total	0.9%	19.0%	4.0%	0%	23.9%	-	9.2%	28.7%	0.6%	0.1%	38.5%	-	0.1%	17.7%	4.7%	0% 2	22.5%	-	0.2%	12.6%	2.3%	0%	15.1%	-	-
PHF	0.625	0.883	0.833	-	0.914	-	0.851	0.921	0.500	0.250	0.894	-	0.250	0.831	0.932	-	0.852	-	0.500	0.771	0.667	-	0.812	-	0.934
Lights	13	315	70	0	398	-	155	481	8	1	645	-	1	296	76	0	373	-	4	209	38	0	251	-	1667
% Lights	86.7%	94.9%	100%	0%	95.4%	-	96.9%	96.0%	80.0%	100%	96.0%	-	100%	95.8%	92.7%)% 9	95.2%	-	100%	95.4%	95.0%	0%	95.4%	-	95.6%
Articulated Trucks	0	4	0	0	4	-	0	1	0	0	1	-	0	2	1	0	3	-	0	0	1	0	1	-	9
% Articulated Trucks	0%	1.2%	0%	0%	1.0%	-	0%	0.2%	0%	0%	0.1%	-	0%	0.6%	1.2%	0%	0.8%	-	0%	0%	2.5%	0%	0.4%	-	0.5%
Buses and Single-Unit Trucks	2	13	0	0	15	-	5	19	2	0	26	-	0	11	5	0	16	-	0	10	1	0	11	-	68
% Buses and Single-Unit Trucks	13.3%	3.9%	0%	0%	3.6%	-	3.1%	3.8%	20.0%	0%	3.9%	-	0%	3.6%	6.1%	0%	4.1%	-	0%	4.6%	2.5%	0%	4.2%	-	3.9%
Pedestrians	-	-	-	-	-	10	-	-	-	-	-	6	-	-	-	-	-	12	-	-	-	-		6	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	_	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 21, 2024

Forced Peak (Mar 21 2024 4PM - 5 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1167483, Location: 40.65575, -74.304294, Site Code: 1

Leg Direction	North A		/est				North Av Westbou		est					n Union A	Avenue			North U Southbo	nion Avo	enue				
Time	L	T	R	U	Арр	Ped*	L	T	R	U	App	Ped*	L	T	R U	Арр	Ped*	L	T	R	U	App	Ped*	Int
2024-03-21 4:00PM	9	66	19	0	94	12	44	134	2	0	180	3	0	76	24 (100	3	1	61	15	0	77	3	451
4:15PM	3	87	17	0	107	7	38	120	2	0	160	0	0	95	11 (106	2	0	72	16	0	88	7	461
4:30PM	5	87	9	0	101	10	48	127	1	0	176	2	0	84	18 0	102	7	0	59	11	0	70	6	449
4:45PM	8	82	20	0	110	8	56	117	1	0	174	4	0	96	11 (107	2	2	92	11	0	105	4	496
Total	25	322	65	0	412	37	186	498	6	0	690	9	0	351	64 0	415	14	3	284	53	0	340	20	1857
% Approach	6.1%	78.2%	15.8%	0%	-	-	27.0%	72.2%	0.9%	0%	-	-	0%	84.6%	15.4% 0%	· -	-	0.9%	83.5%	15.6%	0%	-	-	-
% Total	1.3%	17.3%	3.5%	0%	22.2%	-	10.0%	26.8%	0.3%	0%	37.2%	-	0%	18.9%	3.4% 0%	22.3%	-	0.2%	15.3%	2.9%	0%	18.3%	-	-
PHF	0.694	0.925	0.813	-	0.936	-	0.830	0.929	0.750	-	0.958	-	-	0.914	0.667	- 0.970	-	0.375	0.772	0.828	-	0.810	-	0.936
Lights	24	313	64	0	401	-	183	491	6	0	680	-	0	349	64 0	413	-	3	283	52	0	338	-	1832
% Lights	96.0%	97.2%	98.5%	0%	97.3%	-	98.4%	98.6%	100%	0%	98.6%	-	0%	99.4%	100% 0%	99.5%	-	100%	99.6%	98.1%	0%	99.4%	-	98.7%
Articulated Trucks	0	1	0	0	1	-	0	1	0	0	1	-	0	1	0 0) 1	-	0	0	1	0	1	-	4
% Articulated Trucks	0%	0.3%	0%	0%	0.2%	-	0%	0.2%	0%	0%	0.1%	-	0%	0.3%	0% 0%	0.2%	-	0%	0%	1.9%	0%	0.3%	-	0.2%
Buses and Single-Unit Trucks	1	8	1	0	10	-	3	6	0	0	9	-	0	1	0 0) 1	-	0	1	0	0	1	-	21
% Buses and Single-Unit Trucks	4.0%	2.5%	1.5%	0%	2.4%	-	1.6%	1.2%	0%	0%	1.3%	-	0%	0.3%	0% 0%	0.2%	-	0%	0.4%	0%	0%	0.3%	-	1.1%
Pedestrians	-	-	-	-	-	37	-	-	-	-	-	6	-	-			14	_	-	-	-	-	20	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	66.7%	-	-			100%	-	-	-	-	-	100%	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	3	-	-			0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	33.3%	-	-			0%	-	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Provided by: Imperial Traffic & Data Collection PO Box 4637, Cherry Hill, NJ, 08003, US Forced Peak (Mar 23 2024 11AM - 12 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1167483, Location: 40.65575, -74.304294, Site Code: 1

Leg	North A		/est				North Av		est					nion Av	renue					nion Av	enue				
Direction	Eastbou						Westbou						Northbo						Southbo						_
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	Т	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-03-23 11:00AM	17	67	12	0	96	1	43	88	8	1	140	13	0	72	14	0	86	6	2	47	23	0	72	2	394
11:15AM	10	55	22	0	87	0	40	95	4	0	139	8	1	69	21	0	91	4	1	43	20	0	64	3	381
11:30AM	8	52	16	0	76	2	41	97	7	1	146	3	0	61	23	0	84	3	1	44	15	0	60	3	366
11:45AM	12	58	15	0	85	7	32	108	6	1	147	4	0	77	13	0	90	5	2	57	20	0	79	7	401
Total	. 47	232	65	0	344	10	156	388	25	3	572	28	1	279	71	0	351	18	6	191	78	0	275	15	1542
% Approach	13.7%	67.4%	18.9%	0%	-	-	27.3%	67.8%	4.4%	0.5%	-	-	0.3%	79.5%	20.2% ()%	-	-	2.2%	69.5%	28.4%	0%	_	-	_
% Total	3.0%	15.0%	4.2%	0%	22.3%	-	10.1%	25.2%	1.6%	0.2%	37.1%	-	0.1%	18.1%	4.6% ()% 2	22.8%	-	0.4%	12.4%	5.1%	0%	17.8%	-	_
PHF	0.691	0.866	0.739	-	0.896	-	0.907	0.898	0.781	0.750	0.973	-	0.250	0.906	0.772	-	0.964	-	0.750	0.838	0.848	-	0.870	-	0.961
Lights	47	230	64	0	341	-	152	386	25	3	566	-	1	277	71	0	349	-	6	191	78	0	275	-	1531
% Lights	100%	99.1%	98.5%	0%	99.1%	-	97.4%	99.5%	100%	100%	99.0%	-	100%	99.3%	100% ()% 9	99.4%	-	100%	100%	100%	0%	100%	-	99.3%
Articulated Trucks	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0
% Articulated Trucks	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0% ()%	0%	-	0%	0%	0%	0%	0%	-	0%
Buses and Single-Unit Trucks	0	2	1	0	3	-	4	2	0	0	6	-	0	2	0	0	2	-	0	0	0	0	0	-	11
% Buses and Single-Unit Trucks	0%	0.9%	1.5%	0%	0.9%	-	2.6%	0.5%	0%	0%	1.0%	-	0%	0.7%	0% ()%	0.6%	-	0%	0%	0%	0%	0%	-	0.7%
Pedestrians	-	-	-	-	-	10	-	-	-	-	-	28	-	-	-	-	-	18	-	-	-	-	-	15	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	-	-	-	-	-	100%	
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-	-	-	-	-	0%	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Provided by: Imperial Traffic & Data Collection PO Box 4637, Cherry Hill, NJ, 08003, US

Traffic Improvement Study

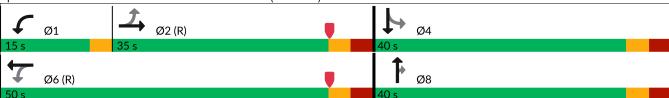
Appendix C | Capacity Analysis

	•	→	•	•	←	•	1	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	1			^	7		4	
Traffic Volume (vph)	15	347	70	160	501	11	0	309	82	4	219	40
Future Volume (vph)	15	347	70	160	501	11	0	309	82	4	219	40
Satd. Flow (prot)	0	1770	0	1752	1815	0	0	1827	1509	0	1770	0
Flt Permitted		0.976		0.411							0.994	
Satd. Flow (perm)	0	1731	0	758	1815	0	0	1827	1509	0	1762	0
Satd. Flow (RTOR)					2							
Lane Group Flow (vph)	0	459	0	170	545	0	0	329	87	0	280	0
Turn Type	Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6					8	4		
Detector Phase	2	2		1	6			8	8	4	4	
Switch Phase												
Minimum Initial (s)	29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
Minimum Split (s)	35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
Total Split (s)	35.0	35.0		15.0	50.0			40.0	40.0	40.0	40.0	
Total Split (%)	38.9%	38.9%		16.7%	55.6%			44.4%	44.4%	44.4%	44.4%	
Yellow Time (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		0.0	3.0			3.0	3.0	3.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)		6.0		3.0	6.0			6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	C-Max	C-Max		None	C-Max			None	None	None	None	
Act Effct Green (s)		43.8		58.9	55.9			22.1	22.1		22.1	
Actuated g/C Ratio		0.49		0.65	0.62			0.25	0.25		0.25	
v/c Ratio		0.54		0.28	0.48			0.73	0.23		0.64	
Control Delay (s/veh)		17.9		8.4	12.2			40.6	26.7		36.8	
Queue Delay		0.6		0.0	0.0			0.0	0.0		0.0	
Total Delay (s/veh)		18.5		8.4	12.2			40.6	26.7		36.8	
LOS		В		A	В			D	С		D	
Approach Delay (s/veh)		18.6			11.3			37.8			36.9	
Approach LOS		B		20	B			D	40		D	
Queue Length 50th (ft)		103		32	149			174	40		144	
Queue Length 95th (ft)		353		75	291			234	70		200	
Internal Link Dist (ft)		239		450	200			163			232	
Turn Bay Length (ft)		0.40		150	1400			600	E70		CCE	
Base Capacity (vph)		842		630	1128			690	570		665	
Starvation Cap Reductn		139		0	0			0	0		0	
Spillback Cap Reductn		0		0	0			0	0		0	
Storage Cap Reductn		0.65		0 27	0 0.48			0 49	0 15		0 42	
Reduced v/c Ratio		0.65		0.27	0.40			0.48	0.15		0.42	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection


Natural Cycle: 60

Control Type: Actuated-Coordinated

Timings EPR 1: Union Avenue & North Avenue (Route 28)

Maximum v/c Ratio: 0.74		
Intersection Signal Delay (s/veh): 22.8	Intersection LOS: C	
Intersection Capacity Utilization 83.4%	ICU Level of Service E	
Analysis Period (min) 15		

Splits and Phases: 1: Union Avenue & North Avenue (Route 28)

	>	→	-	~	←	*_	\	×	4	•	×	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4			4		*	1				
Traffic Volume (vph)	6	361	34	11	489	42	71	53	5	0	0	0
Future Volume (vph)	6	361	34	11	489	42	71	53	5	0	0	0
Satd. Flow (prot)	0	1793	0	0	1792	0	1752	1840	0	0	0	0
Flt Permitted		0.990			0.989		0.950					
Satd. Flow (perm)	0	1777	0	0	1774	0	1752	1840	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	436	0	0	590	0	77	63	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2			6			4					
Detector Phase	2	2		6	6		4	4				
Switch Phase												
Minimum Initial (s)	46.0	46.0		46.0	46.0		12.0	12.0				
Minimum Split (s)	56.0	56.0		56.0	56.0		20.0	20.0				
Total Split (s)	56.0	56.0		56.0	56.0		34.0	34.0				
Total Split (%)	62.2%	62.2%		62.2%	62.2%		37.8%	37.8%				
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0				
All-Red Time (s)	7.0	7.0		7.0	7.0		5.0	5.0				
Lost Time Adjust (s)		0.0			0.0		0.0	0.0				
Total Lost Time (s)		10.0			10.0		8.0	8.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None				
Act Effct Green (s)		65.8			65.8		12.2	12.2				
Actuated g/C Ratio		0.73			0.73		0.14	0.14				
v/c Ratio		0.33			0.45		0.32	0.25				
Control Delay (s/veh)		6.9			3.0		39.3	37.7				
Queue Delay		0.0			0.0		0.0	0.0				
Total Delay (s/veh)		6.9			3.1		39.3	37.7				
LOS		Α			Α		D	D				
Approach Delay (s/veh)		7.0			3.1			38.6				
Approach LOS		Α			Α			D				
Queue Length 50th (ft)		96			30		40	33				
Queue Length 95th (ft)		152			37		82	70				
Internal Link Dist (ft)		216			239			158			144	
Turn Bay Length (ft)							75					
Base Capacity (vph)		1299			1297		506	531				
Starvation Cap Reductn		0			80		0	0				
Spillback Cap Reductn		113			0		0	0				
Storage Cap Reductn		0			0		0	0				
Reduced v/c Ratio		0.37			0.48		0.15	0.12				

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 12 (13%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

2: Eastman Street & North Avenue (Route 28)

Maximum v/c Ratio: 0.45
Intersection Signal Delay (s/veh): 8.8
Intersection Capacity Utilization 63.3%
ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Eastman Street & North Avenue (Route 28)

\$\int \text{\sigma}_2(R)\$
\$\int \text{\sigma}_4 \text

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations	LDL	4	1>	WDIX	₩	OWIL
Traffic Vol, veh/h	92	382	488	6	19	71
Future Vol, veh/h	92	382	488	6	19	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	Stop -	None
Storage Length	_	-	_	-	0	INUITE
Veh in Median Storage	.# -	0	0	_	0	_
Grade, %	,# -	0	0	-	0	_
Peak Hour Factor	90	90	90	90	90	90
	5	7			2	3
Heavy Vehicles, %			4	2		
Mvmt Flow	102	424	542	7	21	79
Major/Minor N	Major1	N	Major2	I	Minor2	
Conflicting Flow All	549	0		0	1174	546
Stage 1	-	_	-	_	546	_
Stage 2	_	_	_	_	629	_
Critical Hdwy	4.15	_	_	_	6.42	6.23
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.245	_	_		3.518	3 327
Pot Cap-1 Maneuver	1006	_	_	_	212	536
Stage 1	-	_	_	_	581	-
Stage 2	_	_	_	_	531	_
Platoon blocked, %		_	_	_	001	
Mov Cap-1 Maneuver	1006	_	_	_	184	536
Mov Cap-1 Maneuver	-	_	_	_	184	-
		-	-		503	-
Stage 1	-	-	-		531	
Stage 2	-	-	-	-	551	-
Approach	EB		WB		SW	
HCM Control Delay, s/\	v 1.74		0		17.76	
HCM LOS					С	
I IOW LOG						
I IOIVI LOO						
		EDI	EDT	WDT	MDDC	11 A /
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBRS	
Minor Lane/Major Mvm Capacity (veh/h)	t	349	EBT -	WBT -	-	381
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		349 0.102	-	WBT - -	-	381 0.262
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/v		349 0.102 9	- - 0	-	- - -	381 0.262 17.8
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	veh)	349 0.102	-	-	-	381 0.262

HCM 7th TWSC Synchro 12 Report

Intersection		
Intersection Delay, s/veh	9.1	
Intersection LOS	Α	

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	28	102	18	5	20	23	15	80	3	24	67	26
Future Vol, veh/h	28	102	18	5	20	23	15	80	3	24	67	26
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, %	2	2	6	2	2	2	2	2	2	9	2	4
Mvmt Flow	39	144	25	7	28	32	21	113	4	34	94	37
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	SE			NW			NE			SW		
Opposing Approach	NW			SE			SW			NE		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SW			NE			SE			NW		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NE			SW			NW			SE		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	9.5			8.2			9			9.2		
HCM LOS	Α			Α			Α			Α		

Lane	NELn1	NWLn1	SELn1	SWLn1
Vol Left, %	15%	10%	19%	21%
Vol Thru, %	82%	42%	69%	57%
Vol Right, %	3%	48%	12%	22%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	98	48	148	117
LT Vol	15	5	28	24
Through Vol	80	20	102	67
RT Vol	3	23	18	26
Lane Flow Rate	138	68	208	165
Geometry Grp	1	1	1	1
Degree of Util (X)	0.184	0.087	0.273	0.219
Departure Headway (Hd)	4.809	4.659	4.709	4.79
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	743	765	761	746
Service Time	2.858	2.713	2.752	2.837
HCM Lane V/C Ratio	0.186	0.089	0.273	0.221
HCM Control Delay, s/veh	9	8.2	9.5	9.2
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.7	0.3	1.1	0.8

Synchro 12 Report HCM 7th AWSC

	۶	-	•	•	←	•	1	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	₽			↑	7		4	
Traffic Volume (vph)	25	375	69	186	498	6	0	351	64	3	284	53
Future Volume (vph)	25	375	69	186	498	6	0	351	64	3	284	53
Satd. Flow (prot)	0	1804	0	1770	1859	0	0	1863	1583	0	1824	0
Flt Permitted		0.956		0.373							0.997	
Satd. Flow (perm)	0	1730	0	695	1859	0	0	1863	1583	0	1818	0
Satd. Flow (RTOR)					1							
Lane Group Flow (vph)	0	499	0	198	536	0	0	373	68	0	361	0
Turn Type	Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6					8	4		
Detector Phase	2	2		1	6			8	8	4	4	
Switch Phase												
Minimum Initial (s)	29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
Minimum Split (s)	35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
Total Split (s)	35.0	35.0		15.0	50.0			40.0	40.0	40.0	40.0	
Total Split (%)	38.9%	38.9%		16.7%	55.6%			44.4%	44.4%	44.4%	44.4%	
Yellow Time (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		0.0	3.0			3.0	3.0	3.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)		6.0		3.0	6.0			6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	C-Max	C-Max		None	C-Max			None	None	None	None	
Act Effct Green (s)		41.1		57.0	54.0			24.0	24.0		24.0	
Actuated g/C Ratio		0.46		0.63	0.60			0.27	0.27		0.27	
v/c Ratio		0.63		0.35	0.48			0.75	0.16		0.74	
Control Delay (s/veh)		22.0		9.9	13.2			39.5	23.8		39.3	
Queue Delay		0.6		0.0	0.0			0.0	0.0		0.0	
Total Delay (s/veh)		22.7		9.9	13.2			39.5	23.8		39.3	
LOS		С		Α	В			D	С		D	
Approach Delay (s/veh)		22.8			12.3			37.1			39.4	
Approach LOS		С			В			D			D	
Queue Length 50th (ft)		182		42	158			193	29		187	
Queue Length 95th (ft)		#460		91	295			258	55		251	
Internal Link Dist (ft)		239			200			163			232	
Turn Bay Length (ft)				150								
Base Capacity (vph)		789		588	1116			703	598		686	
Starvation Cap Reductn		85		0	0			0	0		0	
Spillback Cap Reductn		0		0	0			0	0		0	
Storage Cap Reductn		0		0	0			0	0		0	
Reduced v/c Ratio		0.71		0.34	0.48			0.53	0.11		0.53	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 60

Control Type: Actuated-Coordinated

Timings EPR Maximum v/c Ratio: 0.75
Intersection Signal Delay (s/veh): 25.0 Intersection LOS: C
Intersection Capacity Utilization 87.5% ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: Union Avenue & North Avenue (Route 28)

Ø2 (R)
Ø4
Ø4

	>	→	-	~	←	*_	\	×	4	1	×	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4			4		*	1				
Traffic Volume (vph)	7	418	56	12	496	43	51	65	1	0	0	0
Future Volume (vph)	7	418	56	12	496	43	51	65	1	0	0	0
Satd. Flow (prot)	0	1813	0	0	1841	0	1770	1859	0	0	0	0
Flt Permitted		0.992			0.987		0.950					
Satd. Flow (perm)	0	1800	0	0	1819	0	1770	1859	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	496	0	0	567	0	53	68	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2			6			4					
Detector Phase	2	2		6	6		4	4				
Switch Phase												
Minimum Initial (s)	46.0	46.0		46.0	46.0		12.0	12.0				
Minimum Split (s)	56.0	56.0		56.0	56.0		20.0	20.0				
Total Split (s)	56.0	56.0		56.0	56.0		34.0	34.0				
Total Split (%)	62.2%	62.2%		62.2%	62.2%		37.8%	37.8%				
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0				
All-Red Time (s)	7.0	7.0		7.0	7.0		5.0	5.0				
Lost Time Adjust (s)		0.0			0.0		0.0	0.0				
Total Lost Time (s)		10.0			10.0		8.0	8.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None				
Act Effct Green (s)		66.0			66.0		12.0	12.0				
Actuated g/C Ratio		0.73			0.73		0.13	0.13				
v/c Ratio		0.37			0.42		0.22	0.27				
Control Delay (s/veh)		7.1			2.6		37.6	38.4				
Queue Delay		0.1			0.0		0.0	0.0				
Total Delay (s/veh)		7.3			2.7		37.6	38.4				
LOS		Α			Α		D	D				
Approach Delay (s/veh)		7.3			2.7			38.1				
Approach LOS		Α			Α			D				
Queue Length 50th (ft)		115			34		27	35				
Queue Length 95th (ft)		172			40		62	75				
Internal Link Dist (ft)		216			239			158			144	
Turn Bay Length (ft)							75					
Base Capacity (vph)		1320			1333		511	537				
Starvation Cap Reductn		0			102		0	0				
Spillback Cap Reductn		214			0		0	0				
Storage Cap Reductn		0			0		0	0				
Reduced v/c Ratio		0.45			0.46		0.10	0.13				

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 12 (13%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

Ø6 (R)

2: Eastman Street & North Avenue (Route 28)

Maximum v/c Ratio: 0.43
Intersection Signal Delay (s/veh): 8.3
Intersection Capacity Utilization 63.3%
ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 2: Eastman Street & North Avenue (Route 28)

\$\int \text{\sqrt{2}} \text{\sqrt{2}} \text{\sqrt{2}} \text{\sqrt{3}} \text{\sqrt{3}}

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		4	1>		**	
Traffic Vol, veh/h	104	471	487	9	10	111
Future Vol, veh/h	104	471	487	9	10	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	.# -	0	0	_	0	-
Grade, %	-, <i>''</i>	0	0	_	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	10	2
Mymt Flow	112	506	524	10	11	119
IVIVIII(I IOW	112	500	J24	10	- 11	113
Major/Minor N	Major1	N	//ajor2	1	Minor2	
Conflicting Flow All	533	0	-	0	1259	528
Stage 1	-	-	-	-	528	-
Stage 2	-	-	-	-	730	-
Critical Hdwy	4.12	-	_	-	6.5	6.22
Critical Hdwy Stg 1	-	-	_	-	5.5	-
Critical Hdwy Stg 2	-	-	_	-	5.5	-
Follow-up Hdwy	2.218	-	-	_		3.318
Pot Cap-1 Maneuver	1034	_	_	_	181	550
Stage 1	-	_	_	_	575	-
Stage 2	-	_	_	-	463	-
Platoon blocked, %		_	_	_	,00	
Mov Cap-1 Maneuver	1034	_	_	_	154	550
Mov Cap-1 Maneuver	1004	_	-	-	154	- 550
Stage 1	_	-	_	_	489	_
		-	-	-	463	
Stage 2	-	-	-	-	403	-
Approach	EB		WB		SW	
HCM Control Delay, s/\	v 1.61		0		16.09	
HCM LOS					С	
Minor Long /Mailer M		EDI	EDT	WDT	WEE	NA/L 4
	IL	EBL	EBT	WBT	WBRS	
Minor Lane/Major Mvm					_	454
Capacity (veh/h)		326	-	-		
Capacity (veh/h) HCM Lane V/C Ratio		0.108	-	-	-	0.287
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/v		0.108 8.9	- 0	- -	- -	0.287 16.1
Capacity (veh/h) HCM Lane V/C Ratio	veh)	0.108	-		-	0.287

HCM 7th TWSC Synchro 12 Report EPR

Intersection			
Intersection Delay, s/veh	8.5		
Intersection LOS	Α		

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	22	76	18	9	18	23	11	99	3	37	94	29
Future Vol, veh/h	22	76	18	9	18	23	11	99	3	37	94	29
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	2	2	20	11	6	5	2	2	20	3	3	11
Mvmt Flow	24	82	19	10	19	25	12	106	3	40	101	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	SE			NW			NE			SW		
Opposing Approach	NW			SE			SW			NE		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SW			NE			SE			NW		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NE			SW			NW			SE		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	8.5			8.1			8.4			8.7		
HCM LOS	Α			Α			Α			Α		

Lane	NELn1	NWLn1	SELn1	SWLn1
Vol Left, %	10%	18%	19%	23%
Vol Thru, %	88%	36%	66%	59%
Vol Right, %	3%	46%	16%	18%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	113	50	116	160
LT Vol	11	9	22	37
Through Vol	99	18	76	94
RT Vol	3	23	18	29
Lane Flow Rate	122	54	125	172
Geometry Grp	1	1	1	1
Degree of Util (X)	0.154	0.07	0.16	0.213
Departure Headway (Hd)	4.554	4.673	4.618	4.451
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	787	766	777	807
Service Time	2.582	2.707	2.647	2.477
HCM Lane V/C Ratio	0.155	0.07	0.161	0.213
HCM Control Delay, s/veh	8.4	8.1	8.5	8.7
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.5	0.2	0.6	0.8

Synchro 12 Report HCM 7th AWSC

	۶	-	•	•	←	•	1	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	₽			↑	7		4	
Traffic Volume (vph)	47	255	67	156	388	28	0	279	71	6	191	78
Future Volume (vph)	47	255	67	156	388	28	0	279	71	6	191	78
Satd. Flow (prot)	0	1805	0	1752	1844	0	0	1863	1583	0	1790	0
Flt Permitted		0.904		0.479							0.991	
Satd. Flow (perm)	0	1642	0	884	1844	0	0	1863	1583	0	1776	0
Satd. Flow (RTOR)					6							
Lane Group Flow (vph)	0	385	0	163	433	0	0	291	74	0	286	0
Turn Type	Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6					8	4		
Detector Phase	2	2		1	6			8	8	4	4	
Switch Phase												
Minimum Initial (s)	29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
Minimum Split (s)	35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
Total Split (s)	35.0	35.0		15.0	50.0			40.0	40.0	40.0	40.0	
Total Split (%)	38.9%	38.9%		16.7%	55.6%			44.4%	44.4%	44.4%	44.4%	
Yellow Time (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		0.0	3.0			3.0	3.0	3.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)		6.0		3.0	6.0			6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	C-Max	C-Max		None	C-Max			None	None	None	None	
Act Effct Green (s)		46.3		61.0	58.0			20.0	20.0		20.0	
Actuated g/C Ratio		0.51		0.68	0.64			0.22	0.22		0.22	
v/c Ratio		0.45		0.23	0.36			0.70	0.21		0.72	
Control Delay (s/veh)		13.8		7.0	9.3			41.0	27.9		42.7	
Queue Delay		0.4		0.0	0.0			0.0	0.0		0.0	
Total Delay (s/veh)		14.3		7.0	9.3			41.0	27.9		42.7	
LOS		В		Α	Α			D	С		D	
Approach Delay (s/veh)		14.3			8.7			38.4			42.7	
Approach LOS		В			Α			D			D	
Queue Length 50th (ft)		77		29	100			153	35		152	
Queue Length 95th (ft)		272		65	193			216	64		216	
Internal Link Dist (ft)		239			200			163			232	
Turn Bay Length (ft)				150								
Base Capacity (vph)		844		714	1190			703	598		670	
Starvation Cap Reductn		160		0	0			0	0		0	
Spillback Cap Reductn		0		0	5			0	0		0	
Storage Cap Reductn		0		0	0			0	0		0	
Reduced v/c Ratio		0.56		0.23	0.37			0.41	0.12		0.43	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 60

Control Type: Actuated-Coordinated

Timings EPR 1: Union Avenue & North Avenue (Route 28)

Maximum v/c Ratio: 0.7	73	
Intersection Signal Dela	ay (s/veh): 22.6	Intersection LOS: C
Intersection Capacity L	Itilization 83.2%	ICU Level of Service E
Analysis Period (min) 1	5	
Splits and Phases: 1	: Union Avenue & North Avenue (Route 2	28)
✓ Ø1	♣ Ø2 (R)	ø4
15 s	35 s	40 s
Ø6 (R)		▶ Ø8

Lane Configurations		>	→	-	~	←	*_	\	×	4	•	×	4	
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Traffic Volume (vph) 12 326 54 19 372 76 43 46 4 0 0 0 0 Satd. Flow (prot) 12 326 54 19 372 76 43 46 4 0 0 0 0 Satd. Flow (prot) 12 326 0 0 1818 0 1770 1842 0 0 0 0 0 Flt Permitted 0.981 0.981 0.973 0.950 Satd. Flow (prot) 0 1826 0 0 1773 0 1770 1842 0 0 0 0 0 Satd. Flow (prot) 0 1793 0 0 1773 0 1770 1842 0 0 0 0 0 Satd. Flow (prot) 0 1793 0 0 1773 0 1770 1842 0 0 0 0 0 0 Satd. Flow (prot) 0 440 0 0 524 0 48 56 0 0 0 0 0 Turn Type Perm NA Per	Lane Configurations		4			4		*	1					
Satd. Flow (prot)	Traffic Volume (vph)	12		54	19		76	43		4	0	0	0	
Fit Permitted	Future Volume (vph)	12	326	54	19	372	76	43	46	4	0	0	0	
Satd. Flow (perm)	Satd. Flow (prot)	0	1826	0	0	1818	0	1770	1842	0	0	0	0	
Satid. Flow (RTOR) Lane Group Flow (vph) 0	Flt Permitted		0.981			0.973		0.950						
Lane Group Flow (vph)	Satd. Flow (perm)	0	1793	0	0	1773	0	1770	1842	0	0	0	0	
Turn Type	Satd. Flow (RTOR)													
Protected Phases 2	Lane Group Flow (vph)	0	440	0	0	524	0	48	56	0	0	0	0	
Permitted Phases 2	Turn Type	Perm			Perm	NA		Perm	NA					
Detector Phase 2 2 6 6 4 4	Protected Phases		2			6			4					
Switch Phase Minimum Initial (s) 46.0 46.0 46.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 34.0 34.0 Total Split (s) 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 10.0 10.0 10.0 8.0 8.0 Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None None Act Effet Green (s) 66.0 66.0 12.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.73 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 <td>Permitted Phases</td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Permitted Phases				6			4						
Minimum Initial (s) 46.0 46.0 46.0 56.0 56.0 56.0 56.0 56.0 56.0 20.0 20.0 Total Split (s) 56.0 56.0 56.0 56.0 34.0 34.0 Total Split (%) 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 Lost Time (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 10.0 10.0 8.0 8.0 Lead/Lag Lead/Lag Lead/Lag Optimize? Recall Mode C-Max C-Max C-Max None None Acta Effect Green (s) 66.0 66.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Detector Phase	2	2		6	6		4	4					
Minimum Split (s) 56.0 56.0 56.0 56.0 56.0 34.0 34.0 Total Split (s) 62.2% 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 10.0 10.0 8.0 8.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None None Act Leffet Green (s) 66.0 66.0 12.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	Switch Phase													
Total Split (s) 56.0 56.0 56.0 56.0 34.0 34.0 Total Split (%) 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 7.0 7.0 7.0 5.0 5.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 10.0 10.0 8.0 8.0 Lead/Lag Lead-Lag Optimize? 8.0 8.0 Recall Mode C-Max C-Max C-Max None None Act Effet Green (s) 66.0 66.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13	Minimum Initial (s)	46.0	46.0		46.0	46.0		12.0	12.0					
Total Split (%) 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Minimum Split (s)	56.0	56.0		56.0	56.0		20.0	20.0					
Total Split (%) 62.2% 62.2% 62.2% 62.2% 37.8% 37.8% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Total Split (s)	56.0	56.0		56.0	56.0		34.0	34.0					
All-Red Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 10.0 10.0 8.0 8.0 Lead/Lag Used-Lag Optimize? Recall Mode C-Max C-Max C-Max None None Act Effet Green (s) 66.0 66.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13 0.13 v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A A D D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A A D D Queue Length 50th (ft) 97 178 25 29 Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Storage Cap Reductn 73 0 0 0 0 Storage Cap Reductn 0 0 0 0 0		62.2%	62.2%		62.2%	62.2%		37.8%	37.8%					
Lost Time Adjust (s)	Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0					
Total Lost Time (s) 10.0 10.0 8.0 8.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max C-Max None None <td rowspa<="" td=""><td>All-Red Time (s)</td><td>7.0</td><td>7.0</td><td></td><td>7.0</td><td>7.0</td><td></td><td>5.0</td><td>5.0</td><td></td><td></td><td></td><td></td></td>	<td>All-Red Time (s)</td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>5.0</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td>	All-Red Time (s)	7.0	7.0		7.0	7.0		5.0	5.0				
Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None None Act Effet Green (s) 66.0 66.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13 0.13 v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 5 5 3 3 144 Turn Bay Length (rt) 1315 1300 511 532	Lost Time Adjust (s)		0.0			0.0		0.0	0.0					
Lead-Lag Optimize? Recall Mode	Total Lost Time (s)		10.0			10.0		8.0	8.0					
Recall Mode C-Max C-Max C-Max None None Act Effct Green (s) 66.0 66.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13 0.13 v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 75 8ase Capacity (vph) 1315 1300 511 532 Starvation Cap	Lead/Lag													
Act Effct Green (s) 66.0 66.0 12.0 12.0 Actuated g/C Ratio 0.73 0.73 0.13 0.13 v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 <t< td=""><td>Lead-Lag Optimize?</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lead-Lag Optimize?													
Actuated g/C Ratio 0.73 0.73 0.13 0.13 v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None					
v/c Ratio 0.33 0.40 0.20 0.22 Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 8 144 144 Turn Bay Length (ft) 1315 1300 511 532 532 Starvation Cap Reductn 0 248 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 <	Act Effct Green (s)		66.0			66.0		12.0	12.0					
Control Delay (s/veh) 6.7 5.7 37.2 37.5 Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Actuated g/C Ratio		0.73			0.73		0.13	0.13					
Queue Delay 0.0 0.2 0.0 0.0 Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	v/c Ratio		0.33			0.40		0.20	0.22					
Total Delay (s/veh) 6.8 5.9 37.2 37.5 LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Control Delay (s/veh)		6.7			5.7		37.2	37.5					
LOS A A D D Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Delay		0.0			0.2		0.0	0.0					
Approach Delay (s/veh) 6.8 5.9 37.4 Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Total Delay (s/veh)		6.8			5.9		37.2	37.5					
Approach LOS A A D Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	LOS		Α			Α		D						
Queue Length 50th (ft) 97 178 25 29 Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Approach Delay (s/veh)		6.8			5.9			37.4					
Queue Length 95th (ft) 145 77 57 64 Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Approach LOS		Α			Α			D					
Internal Link Dist (ft) 216 239 158 144 Turn Bay Length (ft) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Length 50th (ft)		97			178		25	29					
Turn Bay Length (ff) 75 Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Length 95th (ft)		145			77		57	64					
Base Capacity (vph) 1315 1300 511 532 Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Internal Link Dist (ft)		216			239			158			144		
Starvation Cap Reductn 0 248 0 0 Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0 0	Turn Bay Length (ft)							75						
Spillback Cap Reductn 73 0 0 0 Storage Cap Reductn 0 0 0	Base Capacity (vph)		1315			1300		511	532					
Storage Cap Reductn 0 0 0	Starvation Cap Reductn		0			248		0	0					
Storage Cap Reductn 0 0 0	Spillback Cap Reductn		73			0		0	0					
			0			0		0	0					
	<u> </u>		0.35			0.50		0.09	0.11					

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 12 (13%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

2: Eastman Street & North Avenue (Route 28)

Maximum v/c Ratio: 0.40
Intersection Signal Delay (s/veh): 9.4
Intersection Capacity Utilization 63.3%
ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 2: Eastman Street & North Avenue (Route 28)

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations	LDL	4	1≯	WDIX	₩.	OVVIX
Traffic Vol, veh/h	116	372	362	14	20	123
Future Vol, veh/h	116	372	362	14	20	123
Conflicting Peds, #/hr	0	0	0	0	O Cton	O Ctop
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	5	2
Mvmt Flow	122	392	381	15	21	129
Major/Minor N	Major1	N	Major2		Minor2	
						200
Conflicting Flow All	396	0	-		1024	388
Stage 1	-	-	-	-	388	-
Stage 2	-	-	-	-	636	-
Critical Hdwy	4.12	-	-	-	6.45	6.22
Critical Hdwy Stg 1	-	-	-	-	5.45	-
Critical Hdwy Stg 2	-	-	-	-	5.45	-
Follow-up Hdwy	2.218	-	-	-	3.545	
Pot Cap-1 Maneuver	1163	-	-	-	257	660
Stage 1	-	-	-	-	679	-
Stage 2	-	-	-	-	522	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1163	-	_	-	223	660
Mov Cap-2 Maneuver	_	_	-	_	223	-
Stage 1	_	_	_	_	588	_
Stage 2	_	_	_	_	522	_
J.a.g. 2					<i>VLL</i>	
Approach	EB		WB		SW	
HCM Control Delay, s/\	v 2.01		0		14.78	
HCM LOS					В	
	.4	EDI	EDT	WDT	WDDC	\\\/\ \n1
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBRS	
Minor Lane/Major Mvm Capacity (veh/h)	nt	428	-	-	-	518
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		428 0.105	-	-	-	518 0.291
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/v		428 0.105 8.5	- - 0	-	- - -	518 0.291 14.8
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	veh)	428 0.105	-	-	-	518 0.291

HCM 7th TWSC Synchro 12 Report

ntersection	
ntersection Delay, s/veh	8.8
ntersection LOS	Α

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	38	40	29	24	8	56	12	112	6	47	90	28
Future Vol, veh/h	38	40	29	24	8	56	12	112	6	47	90	28
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	3	3	4	2	2	2	8	2	2	2	3	2
Mvmt Flow	43	45	33	27	9	63	13	126	7	53	101	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	SE			NW			NE			SW		
Opposing Approach	NW			SE			SW			NE		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SW			NE			SE			NW		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NE			SW			NW			SE		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	8.7			8.2			8.9			9		
HCM LOS	Α			Α			Α			Α		

Lane	NELn1	NWLn1	SELn1	SWLn1	
Vol Left, %	9%	27%	36%	28%	
Vol Thru, %	86%	9%	37%	55%	
Vol Right, %	5%	64%	27%	17%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	88	107	165	
LT Vol	12	24	38	47	
Through Vol	112	8	40	90	
RT Vol	6	56	29	28	
Lane Flow Rate	146	99	120	185	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.193	0.125	0.159	0.236	
Departure Headway (Hd)	4.759	4.54	4.759	4.581	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	752	787	751	782	
Service Time	2.801	2.583	2.801	2.62	
HCM Lane V/C Ratio	0.194	0.126	0.16	0.237	
HCM Control Delay, s/veh	8.9	8.2	8.7	9	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.7	0.4	0.6	0.9	

Synchro 12 Report HCM 7th AWSC

۶	→	•	•	←	•	1	†	~	/	Ţ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4		*	1			^	7		4	
15	347	157	171	501	11	0	309	82	4	219	40
15	347	157	171	501	11	0	309	82	4	219	40
0	1745	0	1752	1815	0	0	1827	1509	0	1770	0
	0.980		0.352							0.994	
0	1712	0	649	1815	0	0	1827	1509	0	1762	0
				2							
0	558	0	184	551	0	0	332	88	0	282	0
Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
	2		1	6			8			4	
2			6					8	4		
2	2		1	6			8	8	4	4	
29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
35.0			15.0	50.0			40.0	40.0	40.0	40.0	
8.9%											
3.0			3.0						3.0		
3.0			0.0						3.0		
	6.0			6.0			6.0	6.0		6.0	
Lag	Lag										
-Max									None		
			A					С			
			81					70			
	537			200			163			232	
										0	
			0								
			0				0			0	
	0.68		0.32	0.49			0.48	0.15		0.42	
	EBL 15 15 0 0 0 0 Perm 2 2 29.0 35.0 35.0 35.0 8.9% 3.0 3.0	EBL EBT 15 347 15 347 0 1745 0.980 0 1712 0 558 Perm NA 2 2 2 2 2 29.0 29.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 30.0 0.0 6.0 Lag Lag Yes Yes	EBL EBT EBR 15 347 157 15 347 157 0 1745 0 0.980 0 1712 0 0 558 0 Perm NA 2 2 2 2 2 2 2 2 29.0 29.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35	EBL EBT EBR WBL 15 347 157 171 15 347 157 171 0 1745 0 1752 0.980 0.352 0 1712 0 649 0 558 0 184 Perm NA pm+pt 2 1 2 6 2 2 1 29.0 29.0 5.0 35.0 35.0 8.0 35.0 35.0 8.0 35.0 35.0 15.0 8.9% 38.9% 16.7% 3.0 3.0 3.0 3.0 3.0 0.0 6.0 3.0 Lag Lag Lead Yes Yes Yes -Max C-Max None 43.3 58.8 0.48 0.65 0.67 0.34 23.0 9.0 C A 24.0 0.0 C A 25.0 0.0 C A 26.0 0.0 C A 27.0 0.0 C A 28.0 0.0 C A	EBL EBT EBR WBL WBT 15 347 157 171 501 15 347 157 171 501 0 1745 0 1752 1815 0.980 0.352 0 1712 0 649 1815 2 0 558 0 184 551 Perm NA pm+pt NA 2 1 6 2 2 6 2 2 1 6 2 2 1 6 2 9.0 29.0 5.0 29.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	EBL EBT EBR WBL WBT WBR 15 347 157 171 501 11 15 347 157 171 501 11 0 1745 0 1752 1815 0 0.980 0.352 0 1712 0 649 1815 0 2 0 558 0 184 551 0 2 0 558 0 184 551 0 2 0 558 0 184 551 0 2 0 2 6 2 2 6 2 2 1 6 2 2 1 6 2 2 1 6 2 2 1 6 2 2 1 6 2 35.0 35.0 8.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35	EBL EBT EBR WBL WBT WBR NBL 15 347 157 171 501 11 0 15 347 157 171 501 11 0 0 1745 0 1752 1815 0 0 0.980 0.352 0 1712 0 649 1815 0 0 2 0 558 0 184 551 0 0 Perm NA pm+pt NA 2 1 6 2 6 2 2 1 6 2 2 2 1 6 2 2 2 1 6 2 2 2 1 6 2 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	EBL EBT EBR WBL WBT WBR NBL NBT 15 347 157 171 501 11 0 309 15 347 157 171 501 11 0 309 0 1745 0 1752 1815 0 0 1827 0.980 0.352 0 1712 0 649 1815 0 0 1827 2 0 558 0 184 551 0 0 332 Perm NA pm+pt NA NA 2 1 6 8 2 6 8 2 2 6 6 2 2 2 1 6 8 8 29.0 29.0 5.0 29.0 7.0 35.0 35.0 8.0 35.0 13.0 35.0 35.0 15.0 50.0 40.0 8.9% 38.9% 16.7% 55.6% 44.4% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 8.9% 38.9% 16.7% 55.6% 44.4% 3.0 3.0 3.0 5.0 6.0 6.0 6.0 3.0 6.0 6.0 6.0 3.0 6.0 6.0 6.0 3.0 6.0 6.0 6.0 6.0 6.0 2 7es Yes Yes -Max C-Max None C-Max None 43.3 58.8 55.8 22.2 0.48 0.65 0.62 0.25 0.67 0.34 0.48 0.73 23.0 9.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 23.0 9.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 23.0 9.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 23.0 9.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 23.0 9.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 11.6 37.7 0 B D 23.0 9.0 12.4 40.5 0.0 12.4 40.5 0.0 12.4 40.5 0.0 12.4 40.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBT EBR WBL WBT WBR NBL NBT NBR 15 347 157 171 501 11 0 309 82 0 1745 0 1752 1815 0 0 1827 1509 0.980 0.352 0 1712 0 649 1815 0 0 1827 1509 2 0 558 0 184 551 0 0 332 88 Perm NA pm+pt NA NA Perm 2 1 6 8 2 2 6 6 8 2 2 2 1 6 8 2 2 2 1 6 8 8 2 2 2 1 6 8 8 2 2 2 1 6 8 8 2 9.0 29.0 5.0 29.0 7.0 7.0 35.0 35.0 8.0 35.0 13.0 13.0 13.0 35.0 35.0 35.0 8.0 35.0 140.0 40.0 40.0 40.0 40.0 40.0 40.0 4	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 60

Control Type: Actuated-Coordinated

Timings EPR 1: Union Avenue & North Avenue (Route 28)

Maximum v/c Ratio: 0.74
Intersection Signal Delay (s/veh): 23.8
Intersection LOS: C
Intersection Capacity Utilization 87.9%
ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: Union Avenue & North Avenue (Route 28)

	#	-	•	€	6	1
Lane Group	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		र्स	₽		*	7
Traffic Volume (vph)	98	376	493	43	143	71
Future Volume (vph)	98	376	493	43	143	71
Satd. Flow (prot)	0	1765	1810	0	1711	1516
Flt Permitted		0.716			0.950	
Satd. Flow (perm)	0	1276	1810	0	1711	1516
Satd. Flow (RTOR)			9			79
Lane Group Flow (vph)	0	527	596	0	159	79
Turn Type	Perm	NA	NA		Prot	Perm
Protected Phases		2	6		4	
Permitted Phases	2	_				4
Detector Phase	2	2	6		4	4
Switch Phase					7	7
Minimum Initial (s)	22.0	22.0	22.0		21.0	21.0
` ,	28.0	28.0	28.0		27.0	27.0
Minimum Split (s)						
Total Split (s)	60.0	60.0	60.0		30.0	30.0
Total Split (%)	66.7%	66.7%	66.7%		33.3%	33.3%
Yellow Time (s)	3.0	3.0	3.0		3.0	3.0
All-Red Time (s)	3.0	3.0	3.0		3.0	3.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0
Total Lost Time (s)		6.0	6.0		6.0	6.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max		None	None
Act Effct Green (s)		57.0	57.0		21.0	21.0
Actuated g/C Ratio		0.63	0.63		0.23	0.23
v/c Ratio		0.65	0.51		0.39	0.19
Control Delay (s/veh)		15.1	3.9		32.7	8.1
Queue Delay		0.0	0.0		0.0	0.0
Total Delay (s/veh)		15.1	3.9		32.7	8.1
LOS		13.1 B	3.5 A		02.7 C	Α
Approach Delay (s/veh)		15.1	3.9		24.6	
,		13.1 B	3.9 A		24.0 C	
Approach LOS		169	28			0
Queue Length 50th (ft)					77 425	0
Queue Length 95th (ft)		281	34		135	35
Internal Link Dist (ft)		527	537		74	
Turn Bay Length (ft)			4440		4	50
Base Capacity (vph)		808	1149		456	462
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.65	0.52		0.35	0.17
Intersection Summary						

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 17 (19%), Referenced to phase 2:EBTL and 6:WBT, Start of Yellow

Natural Cycle: 70

Maximum v/c Ratio: 0.65		
Intersection Signal Delay (s/veh): 11.9	Intersection LOS: B	
Intersection Capacity Utilization 86.3%	ICU Level of Service E	
Analysis Period (min) 15		
Splits and Phases: 3: North Avenue (Route 28) & Miln Street		
A	_	←
Ø2 (R)		Ø4
60 s		30 s
←		
Ø6 (R)		
60 s		

Intersection						
Int Delay, s/veh	4.7					
		CED	NITI	NET	CMT	CWD
Movement	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	7	400	25	400	∱	00
Traffic Vol, veh/h	28	120	35	106	91	26
Future Vol, veh/h	28	120	35	106	91	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	2	6	2	2	2	4
Mvmt Flow	39	169	49	149	128	37
Major/Minor	Minor2		Major1		//ajor2	
Conflicting Flow All	394	146	165	0	-	0
Stage 1	146	-	-	_	_	-
Stage 2	248	_	_	_	_	_
Critical Hdwy	6.42	6.26	4.12	-	_	_
Critical Hdwy Stg 1	5.42	-	- 1.12	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.354	2.218	_	_	_
Pot Cap-1 Maneuver	610	890	1414	_	_	_
Stage 1	881	-	-	_	_	_
Stage 2	793	_	_	_	_	_
Platoon blocked, %	133	_	-	_		-
	587	890	1414			-
Mov Cap-1 Maneuver						
Mov Cap-2 Maneuver	587	-	-	-	-	-
Stage 1	847	-	-	-	-	-
Stage 2	793	-	-	-	-	-
Approach	SE		NE		SW	
HCM Control Delay, sa	v10.97		1.9		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NEL	NET (SELn1	SWT	SWR
	iii.		INET		3771	SVIK
Capacity (veh/h)		447	-	811	-	-
HCM Lane V/C Ratio	1 . 1. \	0.035		0.257	-	-
HCM Control Delay (s	ven)	7.6	0	11	-	-
HCM Lane LOS		A	Α	В	-	-
HCM 95th %tile Q(veh	1)	0.1	-	1	-	-

HCM 7th TWSC Synchro 12 Report

	۶	→	*	•	←	•	1	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	1			↑	7		4	
Traffic Volume (vph)	25	375	190	198	498	6	0	351	64	3	284	53
Future Volume (vph)	25	375	190	198	498	6	0	351	64	3	284	53
Satd. Flow (prot)	0	1767	0	1770	1859	0	0	1863	1583	0	1824	0
Flt Permitted		0.964		0.303							0.997	
Satd. Flow (perm)	0	1706	0	564	1859	0	0	1863	1583	0	1818	0
Satd. Flow (RTOR)					1							
Lane Group Flow (vph)	0	628	0	211	536	0	0	373	68	0	361	0
Turn Type	Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6					8	4		
Detector Phase	2	2		1	6			8	8	4	4	
Switch Phase												
Minimum Initial (s)	29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
Minimum Split (s)	35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
Total Split (s)	35.0	35.0		15.0	50.0			40.0	40.0	40.0	40.0	
Total Split (%)	38.9%	38.9%		16.7%	55.6%			44.4%	44.4%	44.4%	44.4%	
Yellow Time (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		0.0	3.0			3.0	3.0	3.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)		6.0		3.0	6.0			6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	C-Max	C-Max		None	C-Max			None	None	None	None	
Act Effct Green (s)		40.8		57.0	54.0			24.0	24.0		24.0	
Actuated g/C Ratio		0.45		0.63	0.60			0.27	0.27		0.27	
v/c Ratio		0.81		0.42	0.48			0.75	0.16		0.74	
Control Delay (s/veh)		31.1		10.9	13.2			39.5	23.8		39.3	
Queue Delay		0.0		0.0	0.0			0.0	0.0		0.0	
Total Delay (s/veh)		31.1		10.9	13.2			39.5	23.8		39.3	
LOS		С		В	В			D	С		D	
Approach Delay (s/veh)		31.1			12.6			37.1			39.4	
Approach LOS		С			В			D			D	
Queue Length 50th (ft)		220		46	158			193	29		187	
Queue Length 95th (ft)		#629		97	295			258	55		251	
Internal Link Dist (ft)		537			200			163			232	
Turn Bay Length (ft)				150								
Base Capacity (vph)		774		523	1116			703	598		686	
Starvation Cap Reductn		0		0	0			0	0		0	
Spillback Cap Reductn		0		0	0			0	0		0	
Storage Cap Reductn		0		0	0			0	0		0	
Reduced v/c Ratio		0.81		0.40	0.48			0.53	0.11		0.53	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 60

Ø6 (R)

Maximum v/c Ratio: 0.81
Intersection Signal Delay (s/veh): 27.3
Intersection LOS: C
Intersection Capacity Utilization 94.9%
ICU Level of Service F
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: Union Avenue & North Avenue (Route 28)

Open Company of the Co

Timings EPR

	_#	-	•	€	6	1
Lane Group	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		स	₽		*	7
Traffic Volume (vph)	111	464	496	43	126	102
Future Volume (vph)	111	464	496	43	126	102
Satd. Flow (prot)	0	1844	1842	0	1586	1531
Flt Permitted		0.722			0.950	
Satd. Flow (perm)	0	1345	1842	0	1586	1531
Satd. Flow (RTOR)			9			110
Lane Group Flow (vph)	0	618	579	0	135	110
Turn Type	Perm	NA	NA		Prot	Perm
Protected Phases	7 01111	2	6		4	. 51111
Permitted Phases	2					4
Detector Phase	2	2	6		4	4
Switch Phase			U		4	4
Minimum Initial (s)	22.0	22.0	22.0		21.0	21.0
()	28.0	28.0	28.0		27.0	27.0
Minimum Split (s)						
Total Split (s)	60.0	60.0	60.0		30.0	30.0
Total Split (%)	66.7%	66.7%	66.7%		33.3%	33.3%
Yellow Time (s)	3.0	3.0	3.0		3.0	3.0
All-Red Time (s)	3.0	3.0	3.0		3.0	3.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0
Total Lost Time (s)		6.0	6.0		6.0	6.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max		None	None
Act Effct Green (s)		57.0	57.0		21.0	21.0
Actuated g/C Ratio		0.63	0.63		0.23	0.23
v/c Ratio		0.72	0.49		0.36	0.24
Control Delay (s/veh)		17.5	3.6		32.3	7.4
Queue Delay		0.0	0.0		0.0	0.0
Total Delay (s/veh)		17.5	3.6		32.3	7.4
LOS		В	Α		C	Α
Approach Delay (s/veh)		17.5	3.7		21.2	
Approach LOS		17.3 B	3.7 A		C C	
Queue Length 50th (ft)		214	32		65	0
• ,						
Queue Length 95th (ft)		358	39		118	40
Internal Link Dist (ft)		527	537		74	
Turn Bay Length (ft)		^= /	4400		400	50
Base Capacity (vph)		851	1169		422	488
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.73	0.50		0.32	0.23
Intersection Summary						

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 17 (19%), Referenced to phase 2:EBTL and 6:WBT, Start of Yellow

Natural Cycle: 75

Maximum v/c Ratio: 0.73		
Intersection Signal Delay (s/veh): 12.6	Intersection LOS: B	
Intersection Capacity Utilization 91.8%	ICU Level of Service F	
Analysis Period (min) 15		
Splits and Phases: 3: North Avenue (Route 28) & Miln Street		
	_	44
Ø2 (R)		Ø4
60 s		30 s
←		
Ø6 (R)		
60 s		

Intersection						
Int Delay, s/veh	3.3					
		CED	NITI	NET	CMT	CMD
Movement	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	Y	0.4	00	4	124	00
Traffic Vol, veh/h	22	94	29	125	131	29
Future Vol, veh/h	22	94	29	125	131	29
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	20	2	2	3	11
Mvmt Flow	24	101	31	134	141	31
Major/Minor	Minor2	ı	Major1	N	//ajor2	
Conflicting Flow All	353	156	172	0	-	0
Stage 1	156	-	-	-	_	-
Stage 2	197	_	_	_	_	_
Critical Hdwy	6.42	6.4	4.12		_	_
Critical Hdwy Stg 1	5.42	0.4	4.12	_	_	_
	5.42		_			-
Critical Hdwy Stg 2			2.218			
Follow-up Hdwy	3.518			-	-	-
Pot Cap-1 Maneuver	645	844	1405	-	-	-
Stage 1	872	-	_	-	-	-
Stage 2	836	-	-	-	-	-
Platoon blocked, %		0.1.1		-	-	-
Mov Cap-1 Maneuver	629	844	1405	-	-	-
Mov Cap-2 Maneuver	629	-	-	-	-	-
Stage 1	851	-	-	-	-	-
Stage 2	836	-	-	-	-	-
Approach	SE		NE		SW	
HCM Control Delay, s/			1.44		0	
HCM LOS	V10.33		1.77		U	
TOW LOO	U					
Minor Lane/Major Mvn	nt	NEL	NET:	SELn1	SWT	SWR
Capacity (veh/h)		339	-	793	-	-
HCM Lane V/C Ratio		0.022	-	0.157	-	-
HCM Control Delay (s/	veh)	7.6	0	10.4	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.6	-	-
	,					

HCM 7th TWSC Synchro 12 Report

	۶	→	•	•	←	•	4	†	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	1			↑	7		4	
Traffic Volume (vph)	47	255	167	175	388	28	0	279	71	6	191	78
Future Volume (vph)	47	255	167	175	388	28	0	279	71	6	191	78
Satd. Flow (prot)	0	1764	0	1752	1844	0	0	1863	1583	0	1790	0
Flt Permitted		0.922		0.413							0.991	
Satd. Flow (perm)	0	1635	0	762	1844	0	0	1863	1583	0	1776	0
Satd. Flow (RTOR)					6							
Lane Group Flow (vph)	0	489	0	182	433	0	0	291	74	0	286	0
Turn Type	Perm	NA		pm+pt	NA			NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6					8	4		
Detector Phase	2	2		1	6			8	8	4	4	
Switch Phase												
Minimum Initial (s)	29.0	29.0		5.0	29.0			7.0	7.0	7.0	7.0	
Minimum Split (s)	35.0	35.0		8.0	35.0			13.0	13.0	13.0	13.0	
Total Split (s)	35.0	35.0		15.0	50.0			40.0	40.0	40.0	40.0	
Total Split (%)	38.9%	38.9%		16.7%	55.6%			44.4%	44.4%	44.4%	44.4%	
Yellow Time (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		0.0	3.0			3.0	3.0	3.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)		6.0		3.0	6.0			6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	C-Max	C-Max		None	C-Max			None	None	None	None	
Act Effct Green (s)		45.9		61.0	58.0			20.0	20.0		20.0	
Actuated g/C Ratio		0.51		0.68	0.64			0.22	0.22		0.22	
v/c Ratio		0.58		0.29	0.36			0.70	0.21		0.72	
Control Delay (s/veh)		18.1		7.4	9.3			41.0	27.9		42.7	
Queue Delay		0.0		0.0	0.0			0.0	0.0		0.0	
Total Delay (s/veh)		18.1		7.4	9.3			41.0	27.9		42.7	
LOS		В		Α	Α			D	С		D	
Approach Delay (s/veh)		18.1			8.8			38.4			42.7	
Approach LOS		В			Α			D			D	
Queue Length 50th (ft)		152		32	100			153	35		152	
Queue Length 95th (ft)		#312		72	193			216	64		216	
Internal Link Dist (ft)		537			200			163			232	
Turn Bay Length (ft)				150								
Base Capacity (vph)		832		649	1190			703	598		670	
Starvation Cap Reductn		0		0	0			0	0		0	
Spillback Cap Reductn		0		0	0			0	0		0	
Storage Cap Reductn		0		0	0			0	0		0	
Reduced v/c Ratio		0.59		0.28	0.36			0.41	0.12		0.43	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 60

Maximum v/c Ratio: 0.73
Intersection Signal Delay (s/veh): 23.1
Intersection LOS: C
Intersection Capacity Utilization 85.2%
ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: Union Avenue & North Avenue (Route 28)

Ø2 (R)
Ø4
Ø4
Ø5
Ø6 (R)

Timings EPR

	≠	\rightarrow	•	€	6	~
Lane Group	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		स	4		*	7
Traffic Volume (vph)	128	360	386	66	109	103
Future Volume (vph)	128	360	386	66	109	103
Satd. Flow (prot)	0	1839	1825	0	1662	1531
Flt Permitted		0.729			0.950	
Satd. Flow (perm)	0	1358	1825	0	1662	1531
Satd. Flow (RTOR)			17			108
Lane Group Flow (vph)	0	514	475	0	115	108
Turn Type	Perm	NA	NA		Prot	Perm
Protected Phases	. 5	2	6		4	
Permitted Phases	2	_				4
Detector Phase	2	2	6		4	4
Switch Phase					7	7
Minimum Initial (s)	22.0	22.0	22.0		21.0	21.0
Minimum Split (s)	28.0	28.0	28.0		27.0	27.0
,	60.0	60.0	60.0		30.0	30.0
Total Split (s)						
Total Split (%)	66.7%	66.7%	66.7%		33.3%	33.3%
Yellow Time (s)	3.0	3.0	3.0		3.0	3.0
All-Red Time (s)	3.0	3.0	3.0		3.0	3.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0
Total Lost Time (s)		6.0	6.0		6.0	6.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max		None	None
Act Effct Green (s)		57.0	57.0		21.0	21.0
Actuated g/C Ratio		0.63	0.63		0.23	0.23
v/c Ratio		0.59	0.40		0.29	0.24
Control Delay (s/veh)		13.3	5.8		30.9	7.4
Queue Delay		0.0	0.0		0.0	0.0
Total Delay (s/veh)		13.3	5.8		30.9	7.4
LOS		В	A		C	Α
Approach Delay (s/veh)		13.4	5.8		19.6	, ,
Approach LOS		В	A		В	
Queue Length 50th (ft)		155	47		54	0
• ,						40
Queue Length 95th (ft)		252 527	63 537		102 74	40
Internal Link Dist (ft)		327	551		74	E 0
Turn Bay Length (ft)		000	1100		442	50 497
Base Capacity (vph)		860	1162		443	487
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.60	0.41		0.26	0.22
Intersection Summary						

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 17 (19%), Referenced to phase 2:EBTL and 6:WBT, Start of Yellow

Natural Cycle: 65

Maximum v/c Ratio: 0.60
Intersection Signal Delay (s/veh): 11.6
Intersection LOS: B
Intersection Capacity Utilization 82.8%
ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 3: North Avenue (Route 28) & Miln Street

Ø2 (R)

Ø6 (R)

Timings EPR

Intersection						
Int Delay, s/veh	2.8					
		CED	NITI	NET	CVA/T	CIVID
Movement	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	Y	00	00	ર્ન	}	00
Traffic Vol, veh/h	38	69	20	174	137	28
Future Vol, veh/h	38	69	20	174	137	28
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	3	4	8	2	3	2
Mvmt Flow	43	78	22	196	154	31
Major/Minor I	Minor2		Major1	N	Major2	
Conflicting Flow All	410	170	185	0	-	0
Stage 1	170	-	100	-	_	-
Stage 2	240	_	_	_	_	_
Critical Hdwy	6.43	6.24	4.18	_	_	_
Critical Hdwy Stg 1	5.43	0.24	4.10	_		_
Critical Hdwy Stg 1	5.43	_	_	_	_	-
	3.527	3.336	2.272	_	_	_
Follow-up Hdwy		869	1354	-		-
Pot Cap-1 Maneuver	596		1334	-	-	-
Stage 1	858	-	-	-	-	-
Stage 2	797	-	-	-	-	-
Platoon blocked, %	505	000	1051	-	-	-
Mov Cap-1 Maneuver	585	869	1354	-	-	-
Mov Cap-2 Maneuver	585	-	-	-	-	-
Stage 1	842	-	-	-	-	-
Stage 2	797	-	-	-	-	-
Approach	SE		NE		SW	
HCM Control Delay, s/v			0.79		0	
HCM LOS	V 10.0		0.13		U	
TICIVI LOS	D					
Minor Lane/Major Mvm	nt	NEL	NET S	SELn1	SWT	SWR
Capacity (veh/h)		186	-	741	_	-
HCM Lane V/C Ratio		0.017	-	0.162	-	-
HCM Control Delay (s/	veh)	7.7	0	10.8	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh))	0.1	-	0.6	-	-
	,					

HCM 7th TWSC Synchro 12 Report

Colliers Engineering & Design is a trusted provider of multi-discipline engineering, design and consulting services providing customized solutions for public and private clients through a network of offices nationwide.

For a full listing of our office locations, please visit colliersengineering.com

1 877 627 3772

Civil/Site • Traffic/Transportation • Governmental • Survey/Geospatial Infrastructure • Geotechnical/Environmental • Telecommunications • Utilities/Energy